MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprmselgcd1 Structured version   Visualization version   GIF version

Theorem fvprmselgcd1 16383
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.)
Hypothesis
Ref Expression
fvprmselelfz.f 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
Assertion
Ref Expression
fvprmselgcd1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Distinct variable groups:   𝑚,𝑁   𝑚,𝑋   𝑚,𝑌
Allowed substitution hint:   𝐹(𝑚)

Proof of Theorem fvprmselgcd1
StepHypRef Expression
1 fvprmselelfz.f . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
2 eleq1 2902 . . . . . . . 8 (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ))
3 id 22 . . . . . . . 8 (𝑚 = 𝑋𝑚 = 𝑋)
42, 3ifbieq1d 4492 . . . . . . 7 (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1))
5 iftrue 4475 . . . . . . . 8 (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
65ad2antrr 724 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
74, 6sylan9eqr 2880 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
8 elfznn 12939 . . . . . . . 8 (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ)
983ad2ant1 1129 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑋 ∈ ℕ)
109adantl 484 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
111, 7, 10, 10fvmptd2 6778 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
12 eleq1 2902 . . . . . . . 8 (𝑚 = 𝑌 → (𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ))
13 id 22 . . . . . . . 8 (𝑚 = 𝑌𝑚 = 𝑌)
1412, 13ifbieq1d 4492 . . . . . . 7 (𝑚 = 𝑌 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑌 ∈ ℙ, 𝑌, 1))
15 iftrue 4475 . . . . . . . 8 (𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1615ad2antlr 725 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1714, 16sylan9eqr 2880 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
18 elfznn 12939 . . . . . . . 8 (𝑌 ∈ (1...𝑁) → 𝑌 ∈ ℕ)
19183ad2ant2 1130 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑌 ∈ ℕ)
2019adantl 484 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
211, 17, 20, 20fvmptd2 6778 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
2211, 21oveq12d 7176 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 𝑌))
23 prmrp 16058 . . . . . . 7 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 gcd 𝑌) = 1 ↔ 𝑋𝑌))
2423biimprcd 252 . . . . . 6 (𝑋𝑌 → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
25243ad2ant3 1131 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
2625impcom 410 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 𝑌) = 1)
2722, 26eqtrd 2858 . . 3 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
2827ex 415 . 2 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
295ad2antrr 724 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
304, 29sylan9eqr 2880 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
319adantl 484 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
321, 30, 31, 31fvmptd2 6778 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
33 iffalse 4478 . . . . . . . 8 𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3433ad2antlr 725 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3514, 34sylan9eqr 2880 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
3619adantl 484 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
37 1nn 11651 . . . . . . 7 1 ∈ ℕ
3837a1i 11 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
391, 35, 36, 38fvmptd2 6778 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
4032, 39oveq12d 7176 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 1))
41 prmz 16021 . . . . . 6 (𝑋 ∈ ℙ → 𝑋 ∈ ℤ)
42 gcd1 15878 . . . . . 6 (𝑋 ∈ ℤ → (𝑋 gcd 1) = 1)
4341, 42syl 17 . . . . 5 (𝑋 ∈ ℙ → (𝑋 gcd 1) = 1)
4443ad2antrr 724 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 1) = 1)
4540, 44eqtrd 2858 . . 3 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
4645ex 415 . 2 ((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
47 iffalse 4478 . . . . . . . 8 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
4847ad2antrr 724 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
494, 48sylan9eqr 2880 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
509adantl 484 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
5137a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
521, 49, 50, 51fvmptd2 6778 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
5315ad2antlr 725 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
5414, 53sylan9eqr 2880 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
5519adantl 484 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
561, 54, 55, 55fvmptd2 6778 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
5752, 56oveq12d 7176 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 𝑌))
58 prmz 16021 . . . . . 6 (𝑌 ∈ ℙ → 𝑌 ∈ ℤ)
59 1gcd 15883 . . . . . 6 (𝑌 ∈ ℤ → (1 gcd 𝑌) = 1)
6058, 59syl 17 . . . . 5 (𝑌 ∈ ℙ → (1 gcd 𝑌) = 1)
6160ad2antlr 725 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 𝑌) = 1)
6257, 61eqtrd 2858 . . 3 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
6362ex 415 . 2 ((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
6447ad2antrr 724 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
654, 64sylan9eqr 2880 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
669adantl 484 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
6737a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
681, 65, 66, 67fvmptd2 6778 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
6933ad2antlr 725 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
7014, 69sylan9eqr 2880 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
7119adantl 484 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
721, 70, 71, 67fvmptd2 6778 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
7368, 72oveq12d 7176 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 1))
74 1z 12015 . . . . 5 1 ∈ ℤ
75 1gcd 15883 . . . . 5 (1 ∈ ℤ → (1 gcd 1) = 1)
7674, 75mp1i 13 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 1) = 1)
7773, 76eqtrd 2858 . . 3 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
7877ex 415 . 2 ((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
7928, 46, 63, 784cases 1035 1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  ifcif 4469  cmpt 5148  cfv 6357  (class class class)co 7158  1c1 10540  cn 11640  cz 11984  ...cfz 12895   gcd cgcd 15845  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-prm 16018
This theorem is referenced by:  prmodvdslcmf  16385
  Copyright terms: Public domain W3C validator