MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprmselgcd1 Structured version   Visualization version   GIF version

Theorem fvprmselgcd1 16153
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.)
Hypothesis
Ref Expression
fvprmselelfz.f 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
Assertion
Ref Expression
fvprmselgcd1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Distinct variable groups:   𝑚,𝑁   𝑚,𝑋   𝑚,𝑌
Allowed substitution hint:   𝐹(𝑚)

Proof of Theorem fvprmselgcd1
StepHypRef Expression
1 fvprmselelfz.f . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
2 eleq1 2847 . . . . . . . 8 (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ))
3 id 22 . . . . . . . 8 (𝑚 = 𝑋𝑚 = 𝑋)
42, 3ifbieq1d 4330 . . . . . . 7 (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1))
5 iftrue 4313 . . . . . . . 8 (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
65ad2antrr 716 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
74, 6sylan9eqr 2836 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
8 elfznn 12687 . . . . . . . 8 (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ)
983ad2ant1 1124 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑋 ∈ ℕ)
109adantl 475 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
111, 7, 10, 10fvmptd2 6549 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
12 eleq1 2847 . . . . . . . 8 (𝑚 = 𝑌 → (𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ))
13 id 22 . . . . . . . 8 (𝑚 = 𝑌𝑚 = 𝑌)
1412, 13ifbieq1d 4330 . . . . . . 7 (𝑚 = 𝑌 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑌 ∈ ℙ, 𝑌, 1))
15 iftrue 4313 . . . . . . . 8 (𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1615ad2antlr 717 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1714, 16sylan9eqr 2836 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
18 elfznn 12687 . . . . . . . 8 (𝑌 ∈ (1...𝑁) → 𝑌 ∈ ℕ)
19183ad2ant2 1125 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑌 ∈ ℕ)
2019adantl 475 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
211, 17, 20, 20fvmptd2 6549 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
2211, 21oveq12d 6940 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 𝑌))
23 prmrp 15828 . . . . . . 7 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 gcd 𝑌) = 1 ↔ 𝑋𝑌))
2423biimprcd 242 . . . . . 6 (𝑋𝑌 → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
25243ad2ant3 1126 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
2625impcom 398 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 𝑌) = 1)
2722, 26eqtrd 2814 . . 3 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
2827ex 403 . 2 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
295ad2antrr 716 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
304, 29sylan9eqr 2836 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
319adantl 475 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
321, 30, 31, 31fvmptd2 6549 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
33 iffalse 4316 . . . . . . . 8 𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3433ad2antlr 717 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3514, 34sylan9eqr 2836 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
3619adantl 475 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
37 1nn 11387 . . . . . . 7 1 ∈ ℕ
3837a1i 11 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
391, 35, 36, 38fvmptd2 6549 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
4032, 39oveq12d 6940 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 1))
41 prmz 15794 . . . . . 6 (𝑋 ∈ ℙ → 𝑋 ∈ ℤ)
42 gcd1 15655 . . . . . 6 (𝑋 ∈ ℤ → (𝑋 gcd 1) = 1)
4341, 42syl 17 . . . . 5 (𝑋 ∈ ℙ → (𝑋 gcd 1) = 1)
4443ad2antrr 716 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 1) = 1)
4540, 44eqtrd 2814 . . 3 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
4645ex 403 . 2 ((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
47 iffalse 4316 . . . . . . . 8 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
4847ad2antrr 716 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
494, 48sylan9eqr 2836 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
509adantl 475 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
5137a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
521, 49, 50, 51fvmptd2 6549 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
5315ad2antlr 717 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
5414, 53sylan9eqr 2836 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
5519adantl 475 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
561, 54, 55, 55fvmptd2 6549 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
5752, 56oveq12d 6940 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 𝑌))
58 prmz 15794 . . . . . 6 (𝑌 ∈ ℙ → 𝑌 ∈ ℤ)
59 1gcd 15660 . . . . . 6 (𝑌 ∈ ℤ → (1 gcd 𝑌) = 1)
6058, 59syl 17 . . . . 5 (𝑌 ∈ ℙ → (1 gcd 𝑌) = 1)
6160ad2antlr 717 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 𝑌) = 1)
6257, 61eqtrd 2814 . . 3 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
6362ex 403 . 2 ((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
6447ad2antrr 716 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
654, 64sylan9eqr 2836 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
669adantl 475 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
6737a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
681, 65, 66, 67fvmptd2 6549 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
6933ad2antlr 717 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
7014, 69sylan9eqr 2836 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
7119adantl 475 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
721, 70, 71, 67fvmptd2 6549 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
7368, 72oveq12d 6940 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 1))
74 1z 11759 . . . . 5 1 ∈ ℤ
75 1gcd 15660 . . . . 5 (1 ∈ ℤ → (1 gcd 1) = 1)
7674, 75mp1i 13 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 1) = 1)
7773, 76eqtrd 2814 . . 3 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
7877ex 403 . 2 ((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
7928, 46, 63, 784cases 1024 1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  ifcif 4307  cmpt 4965  cfv 6135  (class class class)co 6922  1c1 10273  cn 11374  cz 11728  ...cfz 12643   gcd cgcd 15622  cprime 15790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-gcd 15623  df-prm 15791
This theorem is referenced by:  prmodvdslcmf  16155
  Copyright terms: Public domain W3C validator