MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprmselgcd1 Structured version   Visualization version   GIF version

Theorem fvprmselgcd1 16957
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.)
Hypothesis
Ref Expression
fvprmselelfz.f 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
Assertion
Ref Expression
fvprmselgcd1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Distinct variable groups:   𝑚,𝑁   𝑚,𝑋   𝑚,𝑌
Allowed substitution hint:   𝐹(𝑚)

Proof of Theorem fvprmselgcd1
StepHypRef Expression
1 fvprmselelfz.f . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
2 eleq1 2819 . . . . . . . 8 (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ))
3 id 22 . . . . . . . 8 (𝑚 = 𝑋𝑚 = 𝑋)
42, 3ifbieq1d 4500 . . . . . . 7 (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1))
5 iftrue 4481 . . . . . . . 8 (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
65ad2antrr 726 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
74, 6sylan9eqr 2788 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
8 elfznn 13453 . . . . . . . 8 (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ)
983ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑋 ∈ ℕ)
109adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
111, 7, 10, 10fvmptd2 6937 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
12 eleq1 2819 . . . . . . . 8 (𝑚 = 𝑌 → (𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ))
13 id 22 . . . . . . . 8 (𝑚 = 𝑌𝑚 = 𝑌)
1412, 13ifbieq1d 4500 . . . . . . 7 (𝑚 = 𝑌 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑌 ∈ ℙ, 𝑌, 1))
15 iftrue 4481 . . . . . . . 8 (𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1615ad2antlr 727 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1714, 16sylan9eqr 2788 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
18 elfznn 13453 . . . . . . . 8 (𝑌 ∈ (1...𝑁) → 𝑌 ∈ ℕ)
19183ad2ant2 1134 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑌 ∈ ℕ)
2019adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
211, 17, 20, 20fvmptd2 6937 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
2211, 21oveq12d 7364 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 𝑌))
23 prmrp 16623 . . . . . . 7 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 gcd 𝑌) = 1 ↔ 𝑋𝑌))
2423biimprcd 250 . . . . . 6 (𝑋𝑌 → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
25243ad2ant3 1135 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
2625impcom 407 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 𝑌) = 1)
2722, 26eqtrd 2766 . . 3 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
2827ex 412 . 2 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
295ad2antrr 726 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
304, 29sylan9eqr 2788 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
319adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
321, 30, 31, 31fvmptd2 6937 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
33 iffalse 4484 . . . . . . . 8 𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3433ad2antlr 727 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3514, 34sylan9eqr 2788 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
3619adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
37 1nn 12136 . . . . . . 7 1 ∈ ℕ
3837a1i 11 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
391, 35, 36, 38fvmptd2 6937 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
4032, 39oveq12d 7364 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 1))
41 prmz 16586 . . . . . 6 (𝑋 ∈ ℙ → 𝑋 ∈ ℤ)
42 gcd1 16439 . . . . . 6 (𝑋 ∈ ℤ → (𝑋 gcd 1) = 1)
4341, 42syl 17 . . . . 5 (𝑋 ∈ ℙ → (𝑋 gcd 1) = 1)
4443ad2antrr 726 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 1) = 1)
4540, 44eqtrd 2766 . . 3 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
4645ex 412 . 2 ((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
47 iffalse 4484 . . . . . . . 8 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
4847ad2antrr 726 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
494, 48sylan9eqr 2788 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
509adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
5137a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
521, 49, 50, 51fvmptd2 6937 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
5315ad2antlr 727 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
5414, 53sylan9eqr 2788 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
5519adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
561, 54, 55, 55fvmptd2 6937 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
5752, 56oveq12d 7364 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 𝑌))
58 prmz 16586 . . . . . 6 (𝑌 ∈ ℙ → 𝑌 ∈ ℤ)
59 1gcd 16444 . . . . . 6 (𝑌 ∈ ℤ → (1 gcd 𝑌) = 1)
6058, 59syl 17 . . . . 5 (𝑌 ∈ ℙ → (1 gcd 𝑌) = 1)
6160ad2antlr 727 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 𝑌) = 1)
6257, 61eqtrd 2766 . . 3 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
6362ex 412 . 2 ((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
6447ad2antrr 726 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
654, 64sylan9eqr 2788 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
669adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
6737a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
681, 65, 66, 67fvmptd2 6937 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
6933ad2antlr 727 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
7014, 69sylan9eqr 2788 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
7119adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
721, 70, 71, 67fvmptd2 6937 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
7368, 72oveq12d 7364 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 1))
74 1z 12502 . . . . 5 1 ∈ ℤ
75 1gcd 16444 . . . . 5 (1 ∈ ℤ → (1 gcd 1) = 1)
7674, 75mp1i 13 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 1) = 1)
7773, 76eqtrd 2766 . . 3 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
7877ex 412 . 2 ((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
7928, 46, 63, 784cases 1040 1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  ifcif 4475  cmpt 5172  cfv 6481  (class class class)co 7346  1c1 11007  cn 12125  cz 12468  ...cfz 13407   gcd cgcd 16405  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  prmodvdslcmf  16959
  Copyright terms: Public domain W3C validator