Proof of Theorem fvprmselgcd1
Step | Hyp | Ref
| Expression |
1 | | fvprmselelfz.f |
. . . . . 6
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) |
2 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ)) |
3 | | id 22 |
. . . . . . . 8
⊢ (𝑚 = 𝑋 → 𝑚 = 𝑋) |
4 | 2, 3 | ifbieq1d 4480 |
. . . . . . 7
⊢ (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1)) |
5 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
6 | 5 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
7 | 4, 6 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋) |
8 | | elfznn 13214 |
. . . . . . . 8
⊢ (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ) |
9 | 8 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ ℕ) |
10 | 9 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ ℕ) |
11 | 1, 7, 10, 10 | fvmptd2 6865 |
. . . . 5
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = 𝑋) |
12 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑚 = 𝑌 → (𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ)) |
13 | | id 22 |
. . . . . . . 8
⊢ (𝑚 = 𝑌 → 𝑚 = 𝑌) |
14 | 12, 13 | ifbieq1d 4480 |
. . . . . . 7
⊢ (𝑚 = 𝑌 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑌 ∈ ℙ, 𝑌, 1)) |
15 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌) |
16 | 15 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌) |
17 | 14, 16 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌) |
18 | | elfznn 13214 |
. . . . . . . 8
⊢ (𝑌 ∈ (1...𝑁) → 𝑌 ∈ ℕ) |
19 | 18 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ ℕ) |
20 | 19 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ ℕ) |
21 | 1, 17, 20, 20 | fvmptd2 6865 |
. . . . 5
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑌) = 𝑌) |
22 | 11, 21 | oveq12d 7273 |
. . . 4
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = (𝑋 gcd 𝑌)) |
23 | | prmrp 16345 |
. . . . . . 7
⊢ ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 gcd 𝑌) = 1 ↔ 𝑋 ≠ 𝑌)) |
24 | 23 | biimprcd 249 |
. . . . . 6
⊢ (𝑋 ≠ 𝑌 → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1)) |
25 | 24 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1)) |
26 | 25 | impcom 407 |
. . . 4
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝑋 gcd 𝑌) = 1) |
27 | 22, 26 | eqtrd 2778 |
. . 3
⊢ (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) |
28 | 27 | ex 412 |
. 2
⊢ ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1)) |
29 | 5 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋) |
30 | 4, 29 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋) |
31 | 9 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ ℕ) |
32 | 1, 30, 31, 31 | fvmptd2 6865 |
. . . . 5
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = 𝑋) |
33 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑌 ∈ ℙ →
if(𝑌 ∈ ℙ, 𝑌, 1) = 1) |
34 | 33 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1) |
35 | 14, 34 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
36 | 19 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ ℕ) |
37 | | 1nn 11914 |
. . . . . . 7
⊢ 1 ∈
ℕ |
38 | 37 | a1i 11 |
. . . . . 6
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 1 ∈ ℕ) |
39 | 1, 35, 36, 38 | fvmptd2 6865 |
. . . . 5
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑌) = 1) |
40 | 32, 39 | oveq12d 7273 |
. . . 4
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = (𝑋 gcd 1)) |
41 | | prmz 16308 |
. . . . . 6
⊢ (𝑋 ∈ ℙ → 𝑋 ∈
ℤ) |
42 | | gcd1 16163 |
. . . . . 6
⊢ (𝑋 ∈ ℤ → (𝑋 gcd 1) = 1) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ ℙ → (𝑋 gcd 1) = 1) |
44 | 43 | ad2antrr 722 |
. . . 4
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝑋 gcd 1) = 1) |
45 | 40, 44 | eqtrd 2778 |
. . 3
⊢ (((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) |
46 | 45 | ex 412 |
. 2
⊢ ((𝑋 ∈ ℙ ∧ ¬
𝑌 ∈ ℙ) →
((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1)) |
47 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑋 ∈ ℙ →
if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
48 | 47 | ad2antrr 722 |
. . . . . . 7
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
49 | 4, 48 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
50 | 9 | adantl 481 |
. . . . . 6
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ ℕ) |
51 | 37 | a1i 11 |
. . . . . 6
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 1 ∈ ℕ) |
52 | 1, 49, 50, 51 | fvmptd2 6865 |
. . . . 5
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = 1) |
53 | 15 | ad2antlr 723 |
. . . . . . 7
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌) |
54 | 14, 53 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌) |
55 | 19 | adantl 481 |
. . . . . 6
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ ℕ) |
56 | 1, 54, 55, 55 | fvmptd2 6865 |
. . . . 5
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑌) = 𝑌) |
57 | 52, 56 | oveq12d 7273 |
. . . 4
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = (1 gcd 𝑌)) |
58 | | prmz 16308 |
. . . . . 6
⊢ (𝑌 ∈ ℙ → 𝑌 ∈
ℤ) |
59 | | 1gcd 16169 |
. . . . . 6
⊢ (𝑌 ∈ ℤ → (1 gcd
𝑌) = 1) |
60 | 58, 59 | syl 17 |
. . . . 5
⊢ (𝑌 ∈ ℙ → (1 gcd
𝑌) = 1) |
61 | 60 | ad2antlr 723 |
. . . 4
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (1 gcd 𝑌) = 1) |
62 | 57, 61 | eqtrd 2778 |
. . 3
⊢ (((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) ∧
(𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) |
63 | 62 | ex 412 |
. 2
⊢ ((¬
𝑋 ∈ ℙ ∧
𝑌 ∈ ℙ) →
((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1)) |
64 | 47 | ad2antrr 722 |
. . . . . . 7
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1) |
65 | 4, 64 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
66 | 9 | adantl 481 |
. . . . . 6
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ ℕ) |
67 | 37 | a1i 11 |
. . . . . 6
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 1 ∈ ℕ) |
68 | 1, 65, 66, 67 | fvmptd2 6865 |
. . . . 5
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = 1) |
69 | 33 | ad2antlr 723 |
. . . . . . 7
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1) |
70 | 14, 69 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1) |
71 | 19 | adantl 481 |
. . . . . 6
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ ℕ) |
72 | 1, 70, 71, 67 | fvmptd2 6865 |
. . . . 5
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑌) = 1) |
73 | 68, 72 | oveq12d 7273 |
. . . 4
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = (1 gcd 1)) |
74 | | 1z 12280 |
. . . . 5
⊢ 1 ∈
ℤ |
75 | | 1gcd 16169 |
. . . . 5
⊢ (1 ∈
ℤ → (1 gcd 1) = 1) |
76 | 74, 75 | mp1i 13 |
. . . 4
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → (1 gcd 1) = 1) |
77 | 73, 76 | eqtrd 2778 |
. . 3
⊢ (((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌)) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) |
78 | 77 | ex 412 |
. 2
⊢ ((¬
𝑋 ∈ ℙ ∧
¬ 𝑌 ∈ ℙ)
→ ((𝑋 ∈
(1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1)) |
79 | 28, 46, 63, 78 | 4cases 1037 |
1
⊢ ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋 ≠ 𝑌) → ((𝐹‘𝑋) gcd (𝐹‘𝑌)) = 1) |