MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprmselgcd1 Structured version   Visualization version   GIF version

Theorem fvprmselgcd1 17070
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.)
Hypothesis
Ref Expression
fvprmselelfz.f 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
Assertion
Ref Expression
fvprmselgcd1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Distinct variable groups:   𝑚,𝑁   𝑚,𝑋   𝑚,𝑌
Allowed substitution hint:   𝐹(𝑚)

Proof of Theorem fvprmselgcd1
StepHypRef Expression
1 fvprmselelfz.f . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
2 eleq1 2823 . . . . . . . 8 (𝑚 = 𝑋 → (𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ))
3 id 22 . . . . . . . 8 (𝑚 = 𝑋𝑚 = 𝑋)
42, 3ifbieq1d 4530 . . . . . . 7 (𝑚 = 𝑋 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑋 ∈ ℙ, 𝑋, 1))
5 iftrue 4511 . . . . . . . 8 (𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
65ad2antrr 726 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
74, 6sylan9eqr 2793 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
8 elfznn 13575 . . . . . . . 8 (𝑋 ∈ (1...𝑁) → 𝑋 ∈ ℕ)
983ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑋 ∈ ℕ)
109adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
111, 7, 10, 10fvmptd2 6999 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
12 eleq1 2823 . . . . . . . 8 (𝑚 = 𝑌 → (𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ))
13 id 22 . . . . . . . 8 (𝑚 = 𝑌𝑚 = 𝑌)
1412, 13ifbieq1d 4530 . . . . . . 7 (𝑚 = 𝑌 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑌 ∈ ℙ, 𝑌, 1))
15 iftrue 4511 . . . . . . . 8 (𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1615ad2antlr 727 . . . . . . 7 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
1714, 16sylan9eqr 2793 . . . . . 6 ((((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
18 elfznn 13575 . . . . . . . 8 (𝑌 ∈ (1...𝑁) → 𝑌 ∈ ℕ)
19183ad2ant2 1134 . . . . . . 7 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → 𝑌 ∈ ℕ)
2019adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
211, 17, 20, 20fvmptd2 6999 . . . . 5 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
2211, 21oveq12d 7428 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 𝑌))
23 prmrp 16736 . . . . . . 7 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 gcd 𝑌) = 1 ↔ 𝑋𝑌))
2423biimprcd 250 . . . . . 6 (𝑋𝑌 → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
25243ad2ant3 1135 . . . . 5 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → (𝑋 gcd 𝑌) = 1))
2625impcom 407 . . . 4 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 𝑌) = 1)
2722, 26eqtrd 2771 . . 3 (((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
2827ex 412 . 2 ((𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
295ad2antrr 726 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 𝑋)
304, 29sylan9eqr 2793 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑋)
319adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
321, 30, 31, 31fvmptd2 6999 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 𝑋)
33 iffalse 4514 . . . . . . . 8 𝑌 ∈ ℙ → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3433ad2antlr 727 . . . . . . 7 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
3514, 34sylan9eqr 2793 . . . . . 6 ((((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
3619adantl 481 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
37 1nn 12256 . . . . . . 7 1 ∈ ℕ
3837a1i 11 . . . . . 6 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
391, 35, 36, 38fvmptd2 6999 . . . . 5 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
4032, 39oveq12d 7428 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (𝑋 gcd 1))
41 prmz 16699 . . . . . 6 (𝑋 ∈ ℙ → 𝑋 ∈ ℤ)
42 gcd1 16552 . . . . . 6 (𝑋 ∈ ℤ → (𝑋 gcd 1) = 1)
4341, 42syl 17 . . . . 5 (𝑋 ∈ ℙ → (𝑋 gcd 1) = 1)
4443ad2antrr 726 . . . 4 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝑋 gcd 1) = 1)
4540, 44eqtrd 2771 . . 3 (((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
4645ex 412 . 2 ((𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
47 iffalse 4514 . . . . . . . 8 𝑋 ∈ ℙ → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
4847ad2antrr 726 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
494, 48sylan9eqr 2793 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
509adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
5137a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
521, 49, 50, 51fvmptd2 6999 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
5315ad2antlr 727 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 𝑌)
5414, 53sylan9eqr 2793 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 𝑌)
5519adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
561, 54, 55, 55fvmptd2 6999 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 𝑌)
5752, 56oveq12d 7428 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 𝑌))
58 prmz 16699 . . . . . 6 (𝑌 ∈ ℙ → 𝑌 ∈ ℤ)
59 1gcd 16557 . . . . . 6 (𝑌 ∈ ℤ → (1 gcd 𝑌) = 1)
6058, 59syl 17 . . . . 5 (𝑌 ∈ ℙ → (1 gcd 𝑌) = 1)
6160ad2antlr 727 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 𝑌) = 1)
6257, 61eqtrd 2771 . . 3 (((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
6362ex 412 . 2 ((¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
6447ad2antrr 726 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑋 ∈ ℙ, 𝑋, 1) = 1)
654, 64sylan9eqr 2793 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑋) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
669adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑋 ∈ ℕ)
6737a1i 11 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 1 ∈ ℕ)
681, 65, 66, 67fvmptd2 6999 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑋) = 1)
6933ad2antlr 727 . . . . . . 7 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → if(𝑌 ∈ ℙ, 𝑌, 1) = 1)
7014, 69sylan9eqr 2793 . . . . . 6 ((((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) ∧ 𝑚 = 𝑌) → if(𝑚 ∈ ℙ, 𝑚, 1) = 1)
7119adantl 481 . . . . . 6 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → 𝑌 ∈ ℕ)
721, 70, 71, 67fvmptd2 6999 . . . . 5 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (𝐹𝑌) = 1)
7368, 72oveq12d 7428 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = (1 gcd 1))
74 1z 12627 . . . . 5 1 ∈ ℤ
75 1gcd 16557 . . . . 5 (1 ∈ ℤ → (1 gcd 1) = 1)
7674, 75mp1i 13 . . . 4 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → (1 gcd 1) = 1)
7773, 76eqtrd 2771 . . 3 (((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) ∧ (𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌)) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
7877ex 412 . 2 ((¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ) → ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1))
7928, 46, 63, 784cases 1040 1 ((𝑋 ∈ (1...𝑁) ∧ 𝑌 ∈ (1...𝑁) ∧ 𝑋𝑌) → ((𝐹𝑋) gcd (𝐹𝑌)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  ifcif 4505  cmpt 5206  cfv 6536  (class class class)co 7410  1c1 11135  cn 12245  cz 12593  ...cfz 13529   gcd cgcd 16518  cprime 16695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-prm 16696
This theorem is referenced by:  prmodvdslcmf  17072
  Copyright terms: Public domain W3C validator