| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . . . 6
⊢
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) | 
| 2 | 1 | axlowdimlem7 28963 | . . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))
∈ (𝔼‘𝑁)) | 
| 3 | 2 | adantr 480 | . . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) ∈ (𝔼‘𝑁)) | 
| 4 |  | eluzge3nn 12932 | . . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) | 
| 5 |  | eqid 2737 | . . . . . 6
⊢
({〈(𝑖 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑖 + 1)}) ×
{0})) = ({〈(𝑖 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑖 + 1)}) ×
{0})) | 
| 6 | 5 | axlowdimlem10 28966 | . . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈
(𝔼‘𝑁)) | 
| 7 | 4, 6 | sylan 580 | . . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈
(𝔼‘𝑁)) | 
| 8 | 3, 7 | ifcld 4572 | . . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) × {0})))
∈ (𝔼‘𝑁)) | 
| 9 |  | axlowdimlem15.1 | . . 3
⊢ 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) ×
{0})))) | 
| 10 | 8, 9 | fmptd 7134 | . 2
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁)) | 
| 11 |  | eqeq1 2741 | . . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝑖 = 1 ↔ 𝑗 = 1)) | 
| 12 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) | 
| 13 | 12 | opeq1d 4879 | . . . . . . . . . 10
⊢ (𝑖 = 𝑗 → 〈(𝑖 + 1), 1〉 = 〈(𝑗 + 1), 1〉) | 
| 14 | 13 | sneqd 4638 | . . . . . . . . 9
⊢ (𝑖 = 𝑗 → {〈(𝑖 + 1), 1〉} = {〈(𝑗 + 1), 1〉}) | 
| 15 | 12 | sneqd 4638 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → {(𝑖 + 1)} = {(𝑗 + 1)}) | 
| 16 | 15 | difeq2d 4126 | . . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑗 + 1)})) | 
| 17 | 16 | xpeq1d 5714 | . . . . . . . . 9
⊢ (𝑖 = 𝑗 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) | 
| 18 | 14, 17 | uneq12d 4169 | . . . . . . . 8
⊢ (𝑖 = 𝑗 → ({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) ×
{0}))) | 
| 19 | 11, 18 | ifbieq2d 4552 | . . . . . . 7
⊢ (𝑖 = 𝑗 → if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) × {0}))) =
if(𝑗 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑗 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))) | 
| 20 |  | snex 5436 | . . . . . . . . 9
⊢ {〈3,
-1〉} ∈ V | 
| 21 |  | ovex 7464 | . . . . . . . . . . 11
⊢
(1...𝑁) ∈
V | 
| 22 | 21 | difexi 5330 | . . . . . . . . . 10
⊢
((1...𝑁) ∖
{3}) ∈ V | 
| 23 |  | snex 5436 | . . . . . . . . . 10
⊢ {0}
∈ V | 
| 24 | 22, 23 | xpex 7773 | . . . . . . . . 9
⊢
(((1...𝑁) ∖
{3}) × {0}) ∈ V | 
| 25 | 20, 24 | unex 7764 | . . . . . . . 8
⊢
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈
V | 
| 26 |  | snex 5436 | . . . . . . . . 9
⊢
{〈(𝑗 + 1),
1〉} ∈ V | 
| 27 | 21 | difexi 5330 | . . . . . . . . . 10
⊢
((1...𝑁) ∖
{(𝑗 + 1)}) ∈
V | 
| 28 | 27, 23 | xpex 7773 | . . . . . . . . 9
⊢
(((1...𝑁) ∖
{(𝑗 + 1)}) × {0})
∈ V | 
| 29 | 26, 28 | unex 7764 | . . . . . . . 8
⊢
({〈(𝑗 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑗 + 1)}) ×
{0})) ∈ V | 
| 30 | 25, 29 | ifex 4576 | . . . . . . 7
⊢ if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) ∈
V | 
| 31 | 19, 9, 30 | fvmpt 7016 | . . . . . 6
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝐹‘𝑗) = if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) ×
{0})))) | 
| 32 |  | eqeq1 2741 | . . . . . . . 8
⊢ (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1)) | 
| 33 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1)) | 
| 34 | 33 | opeq1d 4879 | . . . . . . . . . 10
⊢ (𝑖 = 𝑘 → 〈(𝑖 + 1), 1〉 = 〈(𝑘 + 1), 1〉) | 
| 35 | 34 | sneqd 4638 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → {〈(𝑖 + 1), 1〉} = {〈(𝑘 + 1), 1〉}) | 
| 36 | 33 | sneqd 4638 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → {(𝑖 + 1)} = {(𝑘 + 1)}) | 
| 37 | 36 | difeq2d 4126 | . . . . . . . . . 10
⊢ (𝑖 = 𝑘 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑘 + 1)})) | 
| 38 | 37 | xpeq1d 5714 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) | 
| 39 | 35, 38 | uneq12d 4169 | . . . . . . . 8
⊢ (𝑖 = 𝑘 → ({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))) | 
| 40 | 32, 39 | ifbieq2d 4552 | . . . . . . 7
⊢ (𝑖 = 𝑘 → if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) | 
| 41 |  | snex 5436 | . . . . . . . . 9
⊢
{〈(𝑘 + 1),
1〉} ∈ V | 
| 42 | 21 | difexi 5330 | . . . . . . . . . 10
⊢
((1...𝑁) ∖
{(𝑘 + 1)}) ∈
V | 
| 43 | 42, 23 | xpex 7773 | . . . . . . . . 9
⊢
(((1...𝑁) ∖
{(𝑘 + 1)}) × {0})
∈ V | 
| 44 | 41, 43 | unex 7764 | . . . . . . . 8
⊢
({〈(𝑘 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑘 + 1)}) ×
{0})) ∈ V | 
| 45 | 25, 44 | ifex 4576 | . . . . . . 7
⊢ if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ∈
V | 
| 46 | 40, 9, 45 | fvmpt 7016 | . . . . . 6
⊢ (𝑘 ∈ (1...(𝑁 − 1)) → (𝐹‘𝑘) = if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))) | 
| 47 | 31, 46 | eqeqan12d 2751 | . . . . 5
⊢ ((𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝐹‘𝑗) = (𝐹‘𝑘) ↔ if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))) | 
| 48 | 47 | adantl 481 | . . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹‘𝑗) = (𝐹‘𝑘) ↔ if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))) | 
| 49 |  | eqtr3 2763 | . . . . . 6
⊢ ((𝑗 = 1 ∧ 𝑘 = 1) → 𝑗 = 𝑘) | 
| 50 | 49 | 2a1d 26 | . . . . 5
⊢ ((𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ≥‘3)
∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))) | 
| 51 |  | eqid 2737 | . . . . . . . . . . 11
⊢
({〈(𝑘 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑘 + 1)}) ×
{0})) = ({〈(𝑘 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑘 + 1)}) ×
{0})) | 
| 52 | 1, 51 | axlowdimlem13 28969 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) ≠ ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) | 
| 53 | 52 | neneqd 2945 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ¬ ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) | 
| 54 | 53 | pm2.21d 121 | . . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)) | 
| 55 | 54 | adantrl 716 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)) | 
| 56 | 4, 55 | sylan 580 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)) | 
| 57 |  | iftrue 4531 | . . . . . . . 8
⊢ (𝑗 = 1 → if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0}))) | 
| 58 |  | iffalse 4534 | . . . . . . . 8
⊢ (¬
𝑘 = 1 → if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))) | 
| 59 | 57, 58 | eqeqan12d 2751 | . . . . . . 7
⊢ ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) | 
| 60 | 59 | imbi1d 341 | . . . . . 6
⊢ ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) = ({〈(𝑘
+ 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))) | 
| 61 | 56, 60 | imbitrrid 246 | . . . . 5
⊢ ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ≥‘3)
∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))) | 
| 62 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
({〈(𝑗 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑗 + 1)}) ×
{0})) = ({〈(𝑗 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑗 + 1)}) ×
{0})) | 
| 63 | 1, 62 | axlowdimlem13 28969 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) ≠ ({〈(𝑗 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) | 
| 64 | 63 | necomd 2996 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ≠
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) ×
{0}))) | 
| 65 | 64 | neneqd 2945 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ¬ ({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) ×
{0}))) | 
| 66 | 65 | pm2.21d 121 | . . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)) | 
| 67 | 4, 66 | sylan 580 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)) | 
| 68 | 67 | adantrr 717 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)) | 
| 69 |  | iffalse 4534 | . . . . . . . 8
⊢ (¬
𝑗 = 1 → if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) ×
{0}))) | 
| 70 |  | iftrue 4531 | . . . . . . . 8
⊢ (𝑘 = 1 → if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0}))) | 
| 71 | 69, 70 | eqeqan12d 2751 | . . . . . . 7
⊢ ((¬
𝑗 = 1 ∧ 𝑘 = 1) → (if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) ×
{0})))) | 
| 72 | 71 | imbi1d 341 | . . . . . 6
⊢ ((¬
𝑗 = 1 ∧ 𝑘 = 1) → ((if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({〈(𝑗 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({〈3, -1〉}
∪ (((1...𝑁) ∖
{3}) × {0})) → 𝑗
= 𝑘))) | 
| 73 | 68, 72 | imbitrrid 246 | . . . . 5
⊢ ((¬
𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ≥‘3)
∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))) | 
| 74 | 62, 51 | axlowdimlem14 28970 | . . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))
→ 𝑗 = 𝑘)) | 
| 75 | 74 | 3expb 1121 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))
→ 𝑗 = 𝑘)) | 
| 76 | 4, 75 | sylan 580 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))
→ 𝑗 = 𝑘)) | 
| 77 | 69, 58 | eqeqan12d 2751 | . . . . . . 7
⊢ ((¬
𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({〈(𝑗 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) =
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))) | 
| 78 | 77 | imbi1d 341 | . . . . . 6
⊢ ((¬
𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑗 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({〈(𝑗 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) →
𝑗 = 𝑘))) | 
| 79 | 76, 78 | imbitrrid 246 | . . . . 5
⊢ ((¬
𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ≥‘3)
∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))) | 
| 80 | 50, 61, 73, 79 | 4cases 1041 | . . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑗 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑗 + 1)}) × {0}))) =
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)) | 
| 81 | 48, 80 | sylbid 240 | . . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹‘𝑗) = (𝐹‘𝑘) → 𝑗 = 𝑘)) | 
| 82 | 81 | ralrimivva 3202 | . 2
⊢ (𝑁 ∈
(ℤ≥‘3) → ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹‘𝑗) = (𝐹‘𝑘) → 𝑗 = 𝑘)) | 
| 83 |  | dff13 7275 | . 2
⊢ (𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁) ∧ ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹‘𝑗) = (𝐹‘𝑘) → 𝑗 = 𝑘))) | 
| 84 | 10, 82, 83 | sylanbrc 583 | 1
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)) |