MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem15 Structured version   Visualization version   GIF version

Theorem axlowdimlem15 28482
Description: Lemma for axlowdim 28487. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem15.1 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
Assertion
Ref Expression
axlowdimlem15 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Distinct variable group:   𝑖,𝑁
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem axlowdimlem15
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21axlowdimlem7 28474 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
32adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
4 eluzge3nn 12879 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
5 eqid 2731 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
65axlowdimlem10 28477 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
74, 6sylan 579 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
83, 7ifcld 4574 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ (𝔼‘𝑁))
9 axlowdimlem15.1 . . 3 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
108, 9fmptd 7115 . 2 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁))
11 eqeq1 2735 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = 1 ↔ 𝑗 = 1))
12 oveq1 7419 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
1312opeq1d 4879 . . . . . . . . . 10 (𝑖 = 𝑗 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑗 + 1), 1⟩)
1413sneqd 4640 . . . . . . . . 9 (𝑖 = 𝑗 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑗 + 1), 1⟩})
1512sneqd 4640 . . . . . . . . . . 11 (𝑖 = 𝑗 → {(𝑖 + 1)} = {(𝑗 + 1)})
1615difeq2d 4122 . . . . . . . . . 10 (𝑖 = 𝑗 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑗 + 1)}))
1716xpeq1d 5705 . . . . . . . . 9 (𝑖 = 𝑗 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
1814, 17uneq12d 4164 . . . . . . . 8 (𝑖 = 𝑗 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
1911, 18ifbieq2d 4554 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
20 snex 5431 . . . . . . . . 9 {⟨3, -1⟩} ∈ V
21 ovex 7445 . . . . . . . . . . 11 (1...𝑁) ∈ V
2221difexi 5328 . . . . . . . . . 10 ((1...𝑁) ∖ {3}) ∈ V
23 snex 5431 . . . . . . . . . 10 {0} ∈ V
2422, 23xpex 7744 . . . . . . . . 9 (((1...𝑁) ∖ {3}) × {0}) ∈ V
2520, 24unex 7737 . . . . . . . 8 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
26 snex 5431 . . . . . . . . 9 {⟨(𝑗 + 1), 1⟩} ∈ V
2721difexi 5328 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑗 + 1)}) ∈ V
2827, 23xpex 7744 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}) ∈ V
2926, 28unex 7737 . . . . . . . 8 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ∈ V
3025, 29ifex 4578 . . . . . . 7 if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) ∈ V
3119, 9, 30fvmpt 6998 . . . . . 6 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐹𝑗) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
32 eqeq1 2735 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
33 oveq1 7419 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
3433opeq1d 4879 . . . . . . . . . 10 (𝑖 = 𝑘 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑘 + 1), 1⟩)
3534sneqd 4640 . . . . . . . . 9 (𝑖 = 𝑘 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑘 + 1), 1⟩})
3633sneqd 4640 . . . . . . . . . . 11 (𝑖 = 𝑘 → {(𝑖 + 1)} = {(𝑘 + 1)})
3736difeq2d 4122 . . . . . . . . . 10 (𝑖 = 𝑘 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑘 + 1)}))
3837xpeq1d 5705 . . . . . . . . 9 (𝑖 = 𝑘 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
3935, 38uneq12d 4164 . . . . . . . 8 (𝑖 = 𝑘 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
4032, 39ifbieq2d 4554 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
41 snex 5431 . . . . . . . . 9 {⟨(𝑘 + 1), 1⟩} ∈ V
4221difexi 5328 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑘 + 1)}) ∈ V
4342, 23xpex 7744 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) ∈ V
4441, 43unex 7737 . . . . . . . 8 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) ∈ V
4525, 44ifex 4578 . . . . . . 7 if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ∈ V
4640, 9, 45fvmpt 6998 . . . . . 6 (𝑘 ∈ (1...(𝑁 − 1)) → (𝐹𝑘) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
4731, 46eqeqan12d 2745 . . . . 5 ((𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
4847adantl 481 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
49 eqtr3 2757 . . . . . 6 ((𝑗 = 1 ∧ 𝑘 = 1) → 𝑗 = 𝑘)
50492a1d 26 . . . . 5 ((𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
51 eqid 2731 . . . . . . . . . . 11 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
521, 51axlowdimlem13 28480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5352neneqd 2944 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5453pm2.21d 121 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
5554adantrl 713 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
564, 55sylan 579 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
57 iftrue 4534 . . . . . . . 8 (𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
58 iffalse 4537 . . . . . . . 8 𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5957, 58eqeqan12d 2745 . . . . . . 7 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
6059imbi1d 341 . . . . . 6 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
6156, 60imbitrrid 245 . . . . 5 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
62 eqid 2731 . . . . . . . . . . . 12 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
631, 62axlowdimlem13 28480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
6463necomd 2995 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ≠ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6564neneqd 2944 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ¬ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6665pm2.21d 121 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
674, 66sylan 579 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
6867adantrr 714 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
69 iffalse 4537 . . . . . . . 8 𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
70 iftrue 4534 . . . . . . . 8 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7169, 70eqeqan12d 2745 . . . . . . 7 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))))
7271imbi1d 341 . . . . . 6 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)))
7368, 72imbitrrid 245 . . . . 5 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
7462, 51axlowdimlem14 28481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
75743expb 1119 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
764, 75sylan 579 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
7769, 58eqeqan12d 2745 . . . . . . 7 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
7877imbi1d 341 . . . . . 6 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
7976, 78imbitrrid 245 . . . . 5 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
8050, 61, 73, 794cases 1038 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))
8148, 80sylbid 239 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
8281ralrimivva 3199 . 2 (𝑁 ∈ (ℤ‘3) → ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
83 dff13 7257 . 2 (𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁) ∧ ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘)))
8410, 82, 83sylanbrc 582 1 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  cdif 3945  cun 3946  ifcif 4528  {csn 4628  cop 4634  cmpt 5231   × cxp 5674  wf 6539  1-1wf1 6540  cfv 6543  (class class class)co 7412  0cc0 11114  1c1 11115   + caddc 11117  cmin 11449  -cneg 11450  cn 12217  3c3 12273  cuz 12827  ...cfz 13489  𝔼cee 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-ee 28417
This theorem is referenced by:  axlowdim  28487
  Copyright terms: Public domain W3C validator