MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem15 Structured version   Visualization version   GIF version

Theorem axlowdimlem15 28940
Description: Lemma for axlowdim 28945. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem15.1 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
Assertion
Ref Expression
axlowdimlem15 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Distinct variable group:   𝑖,𝑁
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem axlowdimlem15
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21axlowdimlem7 28932 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
32adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
4 eluzge3nn 12911 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
5 eqid 2736 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
65axlowdimlem10 28935 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
74, 6sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
83, 7ifcld 4552 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ (𝔼‘𝑁))
9 axlowdimlem15.1 . . 3 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
108, 9fmptd 7109 . 2 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁))
11 eqeq1 2740 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = 1 ↔ 𝑗 = 1))
12 oveq1 7417 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
1312opeq1d 4860 . . . . . . . . . 10 (𝑖 = 𝑗 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑗 + 1), 1⟩)
1413sneqd 4618 . . . . . . . . 9 (𝑖 = 𝑗 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑗 + 1), 1⟩})
1512sneqd 4618 . . . . . . . . . . 11 (𝑖 = 𝑗 → {(𝑖 + 1)} = {(𝑗 + 1)})
1615difeq2d 4106 . . . . . . . . . 10 (𝑖 = 𝑗 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑗 + 1)}))
1716xpeq1d 5688 . . . . . . . . 9 (𝑖 = 𝑗 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
1814, 17uneq12d 4149 . . . . . . . 8 (𝑖 = 𝑗 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
1911, 18ifbieq2d 4532 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
20 snex 5411 . . . . . . . . 9 {⟨3, -1⟩} ∈ V
21 ovex 7443 . . . . . . . . . . 11 (1...𝑁) ∈ V
2221difexi 5305 . . . . . . . . . 10 ((1...𝑁) ∖ {3}) ∈ V
23 snex 5411 . . . . . . . . . 10 {0} ∈ V
2422, 23xpex 7752 . . . . . . . . 9 (((1...𝑁) ∖ {3}) × {0}) ∈ V
2520, 24unex 7743 . . . . . . . 8 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
26 snex 5411 . . . . . . . . 9 {⟨(𝑗 + 1), 1⟩} ∈ V
2721difexi 5305 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑗 + 1)}) ∈ V
2827, 23xpex 7752 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}) ∈ V
2926, 28unex 7743 . . . . . . . 8 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ∈ V
3025, 29ifex 4556 . . . . . . 7 if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) ∈ V
3119, 9, 30fvmpt 6991 . . . . . 6 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐹𝑗) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
32 eqeq1 2740 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
33 oveq1 7417 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
3433opeq1d 4860 . . . . . . . . . 10 (𝑖 = 𝑘 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑘 + 1), 1⟩)
3534sneqd 4618 . . . . . . . . 9 (𝑖 = 𝑘 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑘 + 1), 1⟩})
3633sneqd 4618 . . . . . . . . . . 11 (𝑖 = 𝑘 → {(𝑖 + 1)} = {(𝑘 + 1)})
3736difeq2d 4106 . . . . . . . . . 10 (𝑖 = 𝑘 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑘 + 1)}))
3837xpeq1d 5688 . . . . . . . . 9 (𝑖 = 𝑘 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
3935, 38uneq12d 4149 . . . . . . . 8 (𝑖 = 𝑘 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
4032, 39ifbieq2d 4532 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
41 snex 5411 . . . . . . . . 9 {⟨(𝑘 + 1), 1⟩} ∈ V
4221difexi 5305 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑘 + 1)}) ∈ V
4342, 23xpex 7752 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) ∈ V
4441, 43unex 7743 . . . . . . . 8 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) ∈ V
4525, 44ifex 4556 . . . . . . 7 if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ∈ V
4640, 9, 45fvmpt 6991 . . . . . 6 (𝑘 ∈ (1...(𝑁 − 1)) → (𝐹𝑘) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
4731, 46eqeqan12d 2750 . . . . 5 ((𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
4847adantl 481 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
49 eqtr3 2758 . . . . . 6 ((𝑗 = 1 ∧ 𝑘 = 1) → 𝑗 = 𝑘)
50492a1d 26 . . . . 5 ((𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
51 eqid 2736 . . . . . . . . . . 11 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
521, 51axlowdimlem13 28938 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5352neneqd 2938 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5453pm2.21d 121 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
5554adantrl 716 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
564, 55sylan 580 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
57 iftrue 4511 . . . . . . . 8 (𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
58 iffalse 4514 . . . . . . . 8 𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5957, 58eqeqan12d 2750 . . . . . . 7 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
6059imbi1d 341 . . . . . 6 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
6156, 60imbitrrid 246 . . . . 5 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
62 eqid 2736 . . . . . . . . . . . 12 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
631, 62axlowdimlem13 28938 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
6463necomd 2988 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ≠ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6564neneqd 2938 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ¬ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6665pm2.21d 121 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
674, 66sylan 580 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
6867adantrr 717 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
69 iffalse 4514 . . . . . . . 8 𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
70 iftrue 4511 . . . . . . . 8 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7169, 70eqeqan12d 2750 . . . . . . 7 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))))
7271imbi1d 341 . . . . . 6 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)))
7368, 72imbitrrid 246 . . . . 5 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
7462, 51axlowdimlem14 28939 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
75743expb 1120 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
764, 75sylan 580 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
7769, 58eqeqan12d 2750 . . . . . . 7 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
7877imbi1d 341 . . . . . 6 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
7976, 78imbitrrid 246 . . . . 5 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
8050, 61, 73, 794cases 1040 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))
8148, 80sylbid 240 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
8281ralrimivva 3188 . 2 (𝑁 ∈ (ℤ‘3) → ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
83 dff13 7252 . 2 (𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁) ∧ ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘)))
8410, 82, 83sylanbrc 583 1 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cdif 3928  cun 3929  ifcif 4505  {csn 4606  cop 4612  cmpt 5206   × cxp 5657  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  -cneg 11472  cn 12245  3c3 12301  cuz 12857  ...cfz 13529  𝔼cee 28872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-ee 28875
This theorem is referenced by:  axlowdim  28945
  Copyright terms: Public domain W3C validator