MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem15 Structured version   Visualization version   GIF version

Theorem axlowdimlem15 28936
Description: Lemma for axlowdim 28941. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem15.1 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
Assertion
Ref Expression
axlowdimlem15 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Distinct variable group:   𝑖,𝑁
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem axlowdimlem15
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21axlowdimlem7 28928 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
32adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
4 eluz3nn 12789 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
5 eqid 2733 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
65axlowdimlem10 28931 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
74, 6sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
83, 7ifcld 4521 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ (𝔼‘𝑁))
9 axlowdimlem15.1 . . 3 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
108, 9fmptd 7053 . 2 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁))
11 eqeq1 2737 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = 1 ↔ 𝑗 = 1))
12 oveq1 7359 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
1312opeq1d 4830 . . . . . . . . . 10 (𝑖 = 𝑗 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑗 + 1), 1⟩)
1413sneqd 4587 . . . . . . . . 9 (𝑖 = 𝑗 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑗 + 1), 1⟩})
1512sneqd 4587 . . . . . . . . . . 11 (𝑖 = 𝑗 → {(𝑖 + 1)} = {(𝑗 + 1)})
1615difeq2d 4075 . . . . . . . . . 10 (𝑖 = 𝑗 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑗 + 1)}))
1716xpeq1d 5648 . . . . . . . . 9 (𝑖 = 𝑗 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
1814, 17uneq12d 4118 . . . . . . . 8 (𝑖 = 𝑗 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
1911, 18ifbieq2d 4501 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
20 snex 5376 . . . . . . . . 9 {⟨3, -1⟩} ∈ V
21 ovex 7385 . . . . . . . . . . 11 (1...𝑁) ∈ V
2221difexi 5270 . . . . . . . . . 10 ((1...𝑁) ∖ {3}) ∈ V
23 snex 5376 . . . . . . . . . 10 {0} ∈ V
2422, 23xpex 7692 . . . . . . . . 9 (((1...𝑁) ∖ {3}) × {0}) ∈ V
2520, 24unex 7683 . . . . . . . 8 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
26 snex 5376 . . . . . . . . 9 {⟨(𝑗 + 1), 1⟩} ∈ V
2721difexi 5270 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑗 + 1)}) ∈ V
2827, 23xpex 7692 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}) ∈ V
2926, 28unex 7683 . . . . . . . 8 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ∈ V
3025, 29ifex 4525 . . . . . . 7 if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) ∈ V
3119, 9, 30fvmpt 6935 . . . . . 6 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐹𝑗) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
32 eqeq1 2737 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
33 oveq1 7359 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
3433opeq1d 4830 . . . . . . . . . 10 (𝑖 = 𝑘 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑘 + 1), 1⟩)
3534sneqd 4587 . . . . . . . . 9 (𝑖 = 𝑘 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑘 + 1), 1⟩})
3633sneqd 4587 . . . . . . . . . . 11 (𝑖 = 𝑘 → {(𝑖 + 1)} = {(𝑘 + 1)})
3736difeq2d 4075 . . . . . . . . . 10 (𝑖 = 𝑘 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑘 + 1)}))
3837xpeq1d 5648 . . . . . . . . 9 (𝑖 = 𝑘 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
3935, 38uneq12d 4118 . . . . . . . 8 (𝑖 = 𝑘 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
4032, 39ifbieq2d 4501 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
41 snex 5376 . . . . . . . . 9 {⟨(𝑘 + 1), 1⟩} ∈ V
4221difexi 5270 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑘 + 1)}) ∈ V
4342, 23xpex 7692 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) ∈ V
4441, 43unex 7683 . . . . . . . 8 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) ∈ V
4525, 44ifex 4525 . . . . . . 7 if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ∈ V
4640, 9, 45fvmpt 6935 . . . . . 6 (𝑘 ∈ (1...(𝑁 − 1)) → (𝐹𝑘) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
4731, 46eqeqan12d 2747 . . . . 5 ((𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
4847adantl 481 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
49 eqtr3 2755 . . . . . 6 ((𝑗 = 1 ∧ 𝑘 = 1) → 𝑗 = 𝑘)
50492a1d 26 . . . . 5 ((𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
51 eqid 2733 . . . . . . . . . . 11 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
521, 51axlowdimlem13 28934 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5352neneqd 2934 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5453pm2.21d 121 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
5554adantrl 716 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
564, 55sylan 580 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
57 iftrue 4480 . . . . . . . 8 (𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
58 iffalse 4483 . . . . . . . 8 𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5957, 58eqeqan12d 2747 . . . . . . 7 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
6059imbi1d 341 . . . . . 6 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
6156, 60imbitrrid 246 . . . . 5 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
62 eqid 2733 . . . . . . . . . . . 12 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
631, 62axlowdimlem13 28934 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
6463necomd 2984 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ≠ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6564neneqd 2934 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ¬ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6665pm2.21d 121 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
674, 66sylan 580 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
6867adantrr 717 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
69 iffalse 4483 . . . . . . . 8 𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
70 iftrue 4480 . . . . . . . 8 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7169, 70eqeqan12d 2747 . . . . . . 7 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))))
7271imbi1d 341 . . . . . 6 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)))
7368, 72imbitrrid 246 . . . . 5 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
7462, 51axlowdimlem14 28935 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
75743expb 1120 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
764, 75sylan 580 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
7769, 58eqeqan12d 2747 . . . . . . 7 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
7877imbi1d 341 . . . . . 6 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
7976, 78imbitrrid 246 . . . . 5 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
8050, 61, 73, 794cases 1040 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))
8148, 80sylbid 240 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
8281ralrimivva 3176 . 2 (𝑁 ∈ (ℤ‘3) → ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
83 dff13 7194 . 2 (𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁) ∧ ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘)))
8410, 82, 83sylanbrc 583 1 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cdif 3895  cun 3896  ifcif 4474  {csn 4575  cop 4581  cmpt 5174   × cxp 5617  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cmin 11351  -cneg 11352  cn 12132  3c3 12188  cuz 12738  ...cfz 13409  𝔼cee 28867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-ee 28870
This theorem is referenced by:  axlowdim  28941
  Copyright terms: Public domain W3C validator