Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheqf1oi Structured version   Visualization version   GIF version

Theorem hasheqf1oi 13775
 Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hasheqf1oi (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem hasheqf1oi
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hasheqf1o 13772 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
21biimprd 251 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
32a1d 25 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
4 fiinfnf1o 13773 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
54pm2.21d 121 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
65a1d 25 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
7 fiinfnf1o 13773 . . . 4 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 19.41v 1950 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉))
9 f1orel 6610 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
109adantr 484 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → Rel 𝑓)
11 f1ocnvb 6620 . . . . . . . . . . . 12 (Rel 𝑓 → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
1210, 11syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
13 f1of 6607 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
14 fex 6986 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝐴𝑉) → 𝑓 ∈ V)
1513, 14sylan 583 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → 𝑓 ∈ V)
16 cnvexg 7640 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
17 f1oeq1 6595 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
1817spcegv 3517 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
1915, 16, 183syl 18 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
20 pm2.24 124 . . . . . . . . . . . 12 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2119, 20syl6 35 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2212, 21sylbid 243 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2322com12 32 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵 → ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2423anabsi5 668 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2524exlimiv 1931 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
268, 25sylbir 238 . . . . . 6 ((∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2726ex 416 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴𝑉 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2827com13 88 . . . 4 (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
297, 28syl 17 . . 3 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
3029ancoms 462 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
31 hashinf 13758 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
3231expcom 417 . . . . . . . . 9 𝐴 ∈ Fin → (𝐴𝑉 → (♯‘𝐴) = +∞))
3332adantr 484 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (♯‘𝐴) = +∞))
3433imp 410 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (♯‘𝐴) = +∞)
3534adantr 484 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = +∞)
36 simpr 488 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → 𝐴𝑉)
37 f1ofo 6614 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
38 focdmex 13774 . . . . . . . 8 ((𝐴𝑉𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
3936, 37, 38syl2an 598 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
40 hashinf 13758 . . . . . . . . 9 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
4140expcom 417 . . . . . . . 8 𝐵 ∈ Fin → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4241ad3antlr 730 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4339, 42mpd 15 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐵) = +∞)
4435, 43eqtr4d 2796 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
4544ex 416 . . . 4 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4645exlimdv 1934 . . 3 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4746ex 416 . 2 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
483, 6, 30, 474cases 1036 1 (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3409  ◡ccnv 5527  Rel wrel 5533  ⟶wf 6336  –onto→wfo 6338  –1-1-onto→wf1o 6339  ‘cfv 6340  Fincfn 8540  +∞cpnf 10723  ♯chash 13753 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-hash 13754 This theorem is referenced by:  hashf1rn  13776  hasheqf1od  13777  2lgslem1  26091  nbedgusgr  27275  rusgrnumwrdl2  27489  wwlksnexthasheq  27802  rusgrnumwlkg  27876  numclwwlkqhash  28273  bj-finsumval0  35015
 Copyright terms: Public domain W3C validator