MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheqf1oi Structured version   Visualization version   GIF version

Theorem hasheqf1oi 13994
Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hasheqf1oi (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem hasheqf1oi
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hasheqf1o 13991 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
21biimprd 247 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
32a1d 25 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
4 fiinfnf1o 13992 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
54pm2.21d 121 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
65a1d 25 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
7 fiinfnf1o 13992 . . . 4 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 19.41v 1954 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉))
9 f1orel 6703 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
109adantr 480 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → Rel 𝑓)
11 f1ocnvb 6713 . . . . . . . . . . . 12 (Rel 𝑓 → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
1210, 11syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
13 f1of 6700 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
14 fex 7084 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝐴𝑉) → 𝑓 ∈ V)
1513, 14sylan 579 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → 𝑓 ∈ V)
16 cnvexg 7745 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
17 f1oeq1 6688 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
1817spcegv 3526 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
1915, 16, 183syl 18 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
20 pm2.24 124 . . . . . . . . . . . 12 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2119, 20syl6 35 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2212, 21sylbid 239 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2322com12 32 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵 → ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2423anabsi5 665 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2524exlimiv 1934 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
268, 25sylbir 234 . . . . . 6 ((∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2726ex 412 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴𝑉 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2827com13 88 . . . 4 (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
297, 28syl 17 . . 3 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
3029ancoms 458 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
31 hashinf 13977 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
3231expcom 413 . . . . . . . . 9 𝐴 ∈ Fin → (𝐴𝑉 → (♯‘𝐴) = +∞))
3332adantr 480 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (♯‘𝐴) = +∞))
3433imp 406 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (♯‘𝐴) = +∞)
3534adantr 480 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = +∞)
36 simpr 484 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → 𝐴𝑉)
37 f1ofo 6707 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
38 focdmex 13993 . . . . . . . 8 ((𝐴𝑉𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
3936, 37, 38syl2an 595 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
40 hashinf 13977 . . . . . . . . 9 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
4140expcom 413 . . . . . . . 8 𝐵 ∈ Fin → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4241ad3antlr 727 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4339, 42mpd 15 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐵) = +∞)
4435, 43eqtr4d 2781 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
4544ex 412 . . . 4 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4645exlimdv 1937 . . 3 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4746ex 412 . 2 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
483, 6, 30, 474cases 1037 1 (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  ccnv 5579  Rel wrel 5585  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  Fincfn 8691  +∞cpnf 10937  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-hash 13973
This theorem is referenced by:  hashf1rn  13995  hasheqf1od  13996  2lgslem1  26447  nbedgusgr  27642  rusgrnumwrdl2  27856  wwlksnexthasheq  28169  rusgrnumwlkg  28243  numclwwlkqhash  28640  bj-finsumval0  35383
  Copyright terms: Public domain W3C validator