MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheqf1oi Structured version   Visualization version   GIF version

Theorem hasheqf1oi 13715
Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hasheqf1oi (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem hasheqf1oi
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hasheqf1o 13712 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
21biimprd 250 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
32a1d 25 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
4 fiinfnf1o 13713 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
54pm2.21d 121 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
65a1d 25 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
7 fiinfnf1o 13713 . . . 4 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 19.41v 1950 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉))
9 f1orel 6620 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
109adantr 483 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → Rel 𝑓)
11 f1ocnvb 6630 . . . . . . . . . . . 12 (Rel 𝑓 → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
1210, 11syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
13 f1of 6617 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
14 fex 6991 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝐴𝑉) → 𝑓 ∈ V)
1513, 14sylan 582 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → 𝑓 ∈ V)
16 cnvexg 7631 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
17 f1oeq1 6606 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
1817spcegv 3599 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
1915, 16, 183syl 18 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
20 pm2.24 124 . . . . . . . . . . . 12 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2119, 20syl6 35 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2212, 21sylbid 242 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2322com12 32 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵 → ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2423anabsi5 667 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2524exlimiv 1931 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
268, 25sylbir 237 . . . . . 6 ((∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2726ex 415 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴𝑉 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2827com13 88 . . . 4 (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
297, 28syl 17 . . 3 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
3029ancoms 461 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
31 hashinf 13698 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
3231expcom 416 . . . . . . . . 9 𝐴 ∈ Fin → (𝐴𝑉 → (♯‘𝐴) = +∞))
3332adantr 483 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (♯‘𝐴) = +∞))
3433imp 409 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (♯‘𝐴) = +∞)
3534adantr 483 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = +∞)
36 simpr 487 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → 𝐴𝑉)
37 f1ofo 6624 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
38 focdmex 13714 . . . . . . . 8 ((𝐴𝑉𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
3936, 37, 38syl2an 597 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
40 hashinf 13698 . . . . . . . . 9 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
4140expcom 416 . . . . . . . 8 𝐵 ∈ Fin → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4241ad3antlr 729 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4339, 42mpd 15 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐵) = +∞)
4435, 43eqtr4d 2861 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
4544ex 415 . . . 4 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4645exlimdv 1934 . . 3 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4746ex 415 . 2 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
483, 6, 30, 474cases 1035 1 (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  ccnv 5556  Rel wrel 5562  wf 6353  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  Fincfn 8511  +∞cpnf 10674  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-hash 13694
This theorem is referenced by:  hashf1rn  13716  hasheqf1od  13717  2lgslem1  25972  nbedgusgr  27156  rusgrnumwrdl2  27370  wwlksnexthasheq  27683  rusgrnumwlkg  27758  numclwwlkqhash  28156  bj-finsumval0  34569
  Copyright terms: Public domain W3C validator