Step | Hyp | Ref
| Expression |
1 | | hasheqf1o 13991 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
((♯‘𝐴) =
(♯‘𝐵) ↔
∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
2 | 1 | biimprd 247 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) |
3 | 2 | a1d 25 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵)))) |
4 | | fiinfnf1o 13992 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬
∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
5 | 4 | pm2.21d 121 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) →
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) |
6 | 5 | a1d 25 |
. 2
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵)))) |
7 | | fiinfnf1o 13992 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬
∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
8 | | 19.41v 1954 |
. . . . . . 7
⊢
(∃𝑓(𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉)) |
9 | | f1orel 6703 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1-onto→𝐵 → Rel 𝑓) |
10 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → Rel 𝑓) |
11 | | f1ocnvb 6713 |
. . . . . . . . . . . 12
⊢ (Rel
𝑓 → (𝑓:𝐴–1-1-onto→𝐵 ↔ ◡𝑓:𝐵–1-1-onto→𝐴)) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (𝑓:𝐴–1-1-onto→𝐵 ↔ ◡𝑓:𝐵–1-1-onto→𝐴)) |
13 | | f1of 6700 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) |
14 | | fex 7084 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝑓 ∈ V) |
15 | 13, 14 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → 𝑓 ∈ V) |
16 | | cnvexg 7745 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ V → ◡𝑓 ∈ V) |
17 | | f1oeq1 6688 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = ◡𝑓 → (𝑔:𝐵–1-1-onto→𝐴 ↔ ◡𝑓:𝐵–1-1-onto→𝐴)) |
18 | 17 | spcegv 3526 |
. . . . . . . . . . . . 13
⊢ (◡𝑓 ∈ V → (◡𝑓:𝐵–1-1-onto→𝐴 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) |
19 | 15, 16, 18 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝑓:𝐵–1-1-onto→𝐴 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) |
20 | | pm2.24 124 |
. . . . . . . . . . . 12
⊢
(∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵))) |
21 | 19, 20 | syl6 35 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝑓:𝐵–1-1-onto→𝐴 → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵)))) |
22 | 12, 21 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (𝑓:𝐴–1-1-onto→𝐵 → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵)))) |
23 | 22 | com12 32 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵)))) |
24 | 23 | anabsi5 665 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵))) |
25 | 24 | exlimiv 1934 |
. . . . . . 7
⊢
(∃𝑓(𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵))) |
26 | 8, 25 | sylbir 234 |
. . . . . 6
⊢
((∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉) → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵))) |
27 | 26 | ex 412 |
. . . . 5
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ 𝑉 → (¬ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (♯‘𝐴) = (♯‘𝐵)))) |
28 | 27 | com13 88 |
. . . 4
⊢ (¬
∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵)))) |
29 | 7, 28 | syl 17 |
. . 3
⊢ ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵)))) |
30 | 29 | ancoms 458 |
. 2
⊢ ((¬
𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵)))) |
31 | | hashinf 13977 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) |
32 | 31 | expcom 413 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Fin → (𝐴 ∈ 𝑉 → (♯‘𝐴) = +∞)) |
33 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) → (𝐴 ∈ 𝑉 → (♯‘𝐴) = +∞)) |
34 | 33 | imp 406 |
. . . . . . 7
⊢ (((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) → (♯‘𝐴) = +∞) |
35 | 34 | adantr 480 |
. . . . . 6
⊢ ((((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = +∞) |
36 | | simpr 484 |
. . . . . . . 8
⊢ (((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
37 | | f1ofo 6707 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
38 | | focdmex 13993 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ V) |
39 | 36, 37, 38 | syl2an 595 |
. . . . . . 7
⊢ ((((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ∈ V) |
40 | | hashinf 13977 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) →
(♯‘𝐵) =
+∞) |
41 | 40 | expcom 413 |
. . . . . . . 8
⊢ (¬
𝐵 ∈ Fin → (𝐵 ∈ V →
(♯‘𝐵) =
+∞)) |
42 | 41 | ad3antlr 727 |
. . . . . . 7
⊢ ((((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:𝐴–1-1-onto→𝐵) → (𝐵 ∈ V → (♯‘𝐵) = +∞)) |
43 | 39, 42 | mpd 15 |
. . . . . 6
⊢ ((((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:𝐴–1-1-onto→𝐵) → (♯‘𝐵) = +∞) |
44 | 35, 43 | eqtr4d 2781 |
. . . . 5
⊢ ((((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
45 | 44 | ex 412 |
. . . 4
⊢ (((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) → (𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) |
46 | 45 | exlimdv 1937 |
. . 3
⊢ (((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) ∧ 𝐴 ∈ 𝑉) → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) |
47 | 46 | ex 412 |
. 2
⊢ ((¬
𝐴 ∈ Fin ∧ ¬
𝐵 ∈ Fin) → (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵)))) |
48 | 3, 6, 30, 47 | 4cases 1037 |
1
⊢ (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) |