MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheqf1oi Structured version   Visualization version   GIF version

Theorem hasheqf1oi 14387
Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.)
Assertion
Ref Expression
hasheqf1oi (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉

Proof of Theorem hasheqf1oi
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hasheqf1o 14385 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
21biimprd 248 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
32a1d 25 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
4 fiinfnf1o 14386 . . . 4 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
54pm2.21d 121 . . 3 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
65a1d 25 . 2 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
7 fiinfnf1o 14386 . . . 4 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → ¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 19.41v 1947 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉))
9 f1orel 6852 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
109adantr 480 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → Rel 𝑓)
11 f1ocnvb 6862 . . . . . . . . . . . 12 (Rel 𝑓 → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
1210, 11syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴))
13 f1of 6849 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
14 fex 7246 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝐴𝑉) → 𝑓 ∈ V)
1513, 14sylan 580 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → 𝑓 ∈ V)
16 cnvexg 7947 . . . . . . . . . . . . 13 (𝑓 ∈ V → 𝑓 ∈ V)
17 f1oeq1 6837 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
1817spcegv 3597 . . . . . . . . . . . . 13 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
1915, 16, 183syl 18 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
20 pm2.24 124 . . . . . . . . . . . 12 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2119, 20syl6 35 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐵1-1-onto𝐴 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2212, 21sylbid 240 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2322com12 32 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵 → ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2423anabsi5 669 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2524exlimiv 1928 . . . . . . 7 (∃𝑓(𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
268, 25sylbir 235 . . . . . 6 ((∃𝑓 𝑓:𝐴1-1-onto𝐵𝐴𝑉) → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵)))
2726ex 412 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴𝑉 → (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (♯‘𝐴) = (♯‘𝐵))))
2827com13 88 . . . 4 (¬ ∃𝑔 𝑔:𝐵1-1-onto𝐴 → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
297, 28syl 17 . . 3 ((𝐵 ∈ Fin ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
3029ancoms 458 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
31 hashinf 14371 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
3231expcom 413 . . . . . . . . 9 𝐴 ∈ Fin → (𝐴𝑉 → (♯‘𝐴) = +∞))
3332adantr 480 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (♯‘𝐴) = +∞))
3433imp 406 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (♯‘𝐴) = +∞)
3534adantr 480 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = +∞)
36 simpr 484 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → 𝐴𝑉)
37 f1ofo 6856 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
38 focdmex 7979 . . . . . . . . 9 (𝐴𝑉 → (𝑓:𝐴onto𝐵𝐵 ∈ V))
3938imp 406 . . . . . . . 8 ((𝐴𝑉𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
4036, 37, 39syl2an 596 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
41 hashinf 14371 . . . . . . . . 9 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
4241expcom 413 . . . . . . . 8 𝐵 ∈ Fin → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4342ad3antlr 731 . . . . . . 7 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐵 ∈ V → (♯‘𝐵) = +∞))
4440, 43mpd 15 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐵) = +∞)
4535, 44eqtr4d 2778 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) ∧ 𝑓:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
4645ex 412 . . . 4 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4746exlimdv 1931 . . 3 (((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴𝑉) → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
4847ex 412 . 2 ((¬ 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵))))
493, 6, 30, 484cases 1040 1 (𝐴𝑉 → (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (♯‘𝐴) = (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  ccnv 5688  Rel wrel 5694  wf 6559  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  Fincfn 8984  +∞cpnf 11290  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-hash 14367
This theorem is referenced by:  hashf1rn  14388  hasheqf1od  14389  2lgslem1  27453  nbedgusgr  29404  rusgrnumwrdl2  29619  wwlksnexthasheq  29933  rusgrnumwlkg  30007  numclwwlkqhash  30404  bj-finsumval0  37268  aks6d1c2  42112
  Copyright terms: Public domain W3C validator