Proof of Theorem dihjat
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(le‘𝐾) =
(le‘𝐾) |
2 | | dihjat.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | dihjat.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | dihjat.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | dihjat.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
6 | | dihjat.s |
. . 3
⊢ ⊕ =
(LSSum‘𝑈) |
7 | | dihjat.i |
. . 3
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
8 | | dihjat.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | | dihjat.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑃 ∈ 𝐴) |
12 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑃(le‘𝐾)𝑊) |
13 | 11, 12 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝑃 ∈ 𝐴 ∧ 𝑃(le‘𝐾)𝑊)) |
14 | | dihjat.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
15 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑄 ∈ 𝐴) |
16 | | simprr 770 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑄(le‘𝐾)𝑊) |
17 | 15, 16 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝑄 ∈ 𝐴 ∧ 𝑄(le‘𝐾)𝑊)) |
18 | 1, 2, 3, 4, 5, 6, 7, 9, 13, 17 | dihjatb 39430 |
. 2
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
19 | | eqid 2738 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | 19, 4 | atbase 37303 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
22 | 10, 21 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
23 | 22 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
24 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → 𝑃(le‘𝐾)𝑊) |
25 | 23, 24 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑃 ∈ (Base‘𝐾) ∧ 𝑃(le‘𝐾)𝑊)) |
26 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → 𝑄 ∈ 𝐴) |
27 | | simprr 770 |
. . . 4
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → ¬ 𝑄(le‘𝐾)𝑊) |
28 | 26, 27 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) |
29 | 19, 1, 2, 3, 4, 5, 6, 7, 20, 25, 28 | dihjatc 39431 |
. 2
⊢ ((𝜑 ∧ (𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
30 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
31 | 19, 4 | atbase 37303 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
32 | 14, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
33 | 32 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑄 ∈ (Base‘𝐾)) |
34 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑄(le‘𝐾)𝑊) |
35 | 33, 34 | jca 512 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝑄 ∈ (Base‘𝐾) ∧ 𝑄(le‘𝐾)𝑊)) |
36 | 10 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → 𝑃 ∈ 𝐴) |
37 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → ¬ 𝑃(le‘𝐾)𝑊) |
38 | 36, 37 | jca 512 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
39 | 19, 1, 2, 3, 4, 5, 6, 7, 30, 35, 38 | dihjatc 39431 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝐼‘(𝑄 ∨ 𝑃)) = ((𝐼‘𝑄) ⊕ (𝐼‘𝑃))) |
40 | 8 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ HL) |
41 | 3, 4 | hlatjcom 37382 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
42 | 40, 10, 14, 41 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
43 | 42 | fveq2d 6778 |
. . . 4
⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = (𝐼‘(𝑄 ∨ 𝑃))) |
44 | 43 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = (𝐼‘(𝑄 ∨ 𝑃))) |
45 | 2, 5, 8 | dvhlmod 39124 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LMod) |
46 | | lmodabl 20170 |
. . . . . 6
⊢ (𝑈 ∈ LMod → 𝑈 ∈ Abel) |
47 | 45, 46 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ Abel) |
48 | | eqid 2738 |
. . . . . . . 8
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
49 | 48 | lsssssubg 20220 |
. . . . . . 7
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
50 | 45, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
51 | 19, 2, 7, 5, 48 | dihlss 39264 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐼‘𝑃) ∈ (LSubSp‘𝑈)) |
52 | 8, 22, 51 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐼‘𝑃) ∈ (LSubSp‘𝑈)) |
53 | 50, 52 | sseldd 3922 |
. . . . 5
⊢ (𝜑 → (𝐼‘𝑃) ∈ (SubGrp‘𝑈)) |
54 | 19, 2, 7, 5, 48 | dihlss 39264 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐼‘𝑄) ∈ (LSubSp‘𝑈)) |
55 | 8, 32, 54 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐼‘𝑄) ∈ (LSubSp‘𝑈)) |
56 | 50, 55 | sseldd 3922 |
. . . . 5
⊢ (𝜑 → (𝐼‘𝑄) ∈ (SubGrp‘𝑈)) |
57 | 6 | lsmcom 19459 |
. . . . 5
⊢ ((𝑈 ∈ Abel ∧ (𝐼‘𝑃) ∈ (SubGrp‘𝑈) ∧ (𝐼‘𝑄) ∈ (SubGrp‘𝑈)) → ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘𝑃))) |
58 | 47, 53, 56, 57 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘𝑃))) |
59 | 58 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘𝑃))) |
60 | 39, 44, 59 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ 𝑄(le‘𝐾)𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
61 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
62 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → 𝑃 ∈ 𝐴) |
63 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → ¬ 𝑃(le‘𝐾)𝑊) |
64 | 62, 63 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
65 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → 𝑄 ∈ 𝐴) |
66 | | simprr 770 |
. . . 4
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → ¬ 𝑄(le‘𝐾)𝑊) |
67 | 65, 66 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) |
68 | 1, 2, 3, 4, 5, 6, 7, 61, 64, 67 | dihjatcc 39436 |
. 2
⊢ ((𝜑 ∧ (¬ 𝑃(le‘𝐾)𝑊 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
69 | 18, 29, 60, 68 | 4casesdan 1039 |
1
⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |