Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(leβπΎ) =
(leβπΎ) |
2 | | dihjat.h |
. . 3
β’ π» = (LHypβπΎ) |
3 | | dihjat.j |
. . 3
β’ β¨ =
(joinβπΎ) |
4 | | dihjat.a |
. . 3
β’ π΄ = (AtomsβπΎ) |
5 | | dihjat.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
6 | | dihjat.s |
. . 3
β’ β =
(LSSumβπ) |
7 | | dihjat.i |
. . 3
β’ πΌ = ((DIsoHβπΎ)βπ) |
8 | | dihjat.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
9 | 8 | adantr 481 |
. . 3
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β (πΎ β HL β§ π β π»)) |
10 | | dihjat.p |
. . . . 5
β’ (π β π β π΄) |
11 | 10 | adantr 481 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β π β π΄) |
12 | | simprl 769 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β π(leβπΎ)π) |
13 | 11, 12 | jca 512 |
. . 3
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β (π β π΄ β§ π(leβπΎ)π)) |
14 | | dihjat.q |
. . . . 5
β’ (π β π β π΄) |
15 | 14 | adantr 481 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β π β π΄) |
16 | | simprr 771 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β π(leβπΎ)π) |
17 | 15, 16 | jca 512 |
. . 3
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β (π β π΄ β§ π(leβπΎ)π)) |
18 | 1, 2, 3, 4, 5, 6, 7, 9, 13, 17 | dihjatb 40275 |
. 2
β’ ((π β§ (π(leβπΎ)π β§ π(leβπΎ)π)) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
19 | | eqid 2732 |
. . 3
β’
(BaseβπΎ) =
(BaseβπΎ) |
20 | 8 | adantr 481 |
. . 3
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (πΎ β HL β§ π β π»)) |
21 | 19, 4 | atbase 38147 |
. . . . . 6
β’ (π β π΄ β π β (BaseβπΎ)) |
22 | 10, 21 | syl 17 |
. . . . 5
β’ (π β π β (BaseβπΎ)) |
23 | 22 | adantr 481 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β π β (BaseβπΎ)) |
24 | | simprl 769 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β π(leβπΎ)π) |
25 | 23, 24 | jca 512 |
. . 3
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (π β (BaseβπΎ) β§ π(leβπΎ)π)) |
26 | 14 | adantr 481 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β π β π΄) |
27 | | simprr 771 |
. . . 4
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β Β¬ π(leβπΎ)π) |
28 | 26, 27 | jca 512 |
. . 3
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (π β π΄ β§ Β¬ π(leβπΎ)π)) |
29 | 19, 1, 2, 3, 4, 5, 6, 7, 20, 25, 28 | dihjatc 40276 |
. 2
β’ ((π β§ (π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
30 | 8 | adantr 481 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β (πΎ β HL β§ π β π»)) |
31 | 19, 4 | atbase 38147 |
. . . . . . 7
β’ (π β π΄ β π β (BaseβπΎ)) |
32 | 14, 31 | syl 17 |
. . . . . 6
β’ (π β π β (BaseβπΎ)) |
33 | 32 | adantr 481 |
. . . . 5
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β π β (BaseβπΎ)) |
34 | | simprr 771 |
. . . . 5
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β π(leβπΎ)π) |
35 | 33, 34 | jca 512 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β (π β (BaseβπΎ) β§ π(leβπΎ)π)) |
36 | 10 | adantr 481 |
. . . . 5
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β π β π΄) |
37 | | simprl 769 |
. . . . 5
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β Β¬ π(leβπΎ)π) |
38 | 36, 37 | jca 512 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β (π β π΄ β§ Β¬ π(leβπΎ)π)) |
39 | 19, 1, 2, 3, 4, 5, 6, 7, 30, 35, 38 | dihjatc 40276 |
. . 3
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
40 | 8 | simpld 495 |
. . . . . 6
β’ (π β πΎ β HL) |
41 | 3, 4 | hlatjcom 38226 |
. . . . . 6
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
42 | 40, 10, 14, 41 | syl3anc 1371 |
. . . . 5
β’ (π β (π β¨ π) = (π β¨ π)) |
43 | 42 | fveq2d 6892 |
. . . 4
β’ (π β (πΌβ(π β¨ π)) = (πΌβ(π β¨ π))) |
44 | 43 | adantr 481 |
. . 3
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β (πΌβ(π β¨ π)) = (πΌβ(π β¨ π))) |
45 | 2, 5, 8 | dvhlmod 39969 |
. . . . . 6
β’ (π β π β LMod) |
46 | | lmodabl 20511 |
. . . . . 6
β’ (π β LMod β π β Abel) |
47 | 45, 46 | syl 17 |
. . . . 5
β’ (π β π β Abel) |
48 | | eqid 2732 |
. . . . . . . 8
β’
(LSubSpβπ) =
(LSubSpβπ) |
49 | 48 | lsssssubg 20561 |
. . . . . . 7
β’ (π β LMod β
(LSubSpβπ) β
(SubGrpβπ)) |
50 | 45, 49 | syl 17 |
. . . . . 6
β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
51 | 19, 2, 7, 5, 48 | dihlss 40109 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β (πΌβπ) β (LSubSpβπ)) |
52 | 8, 22, 51 | syl2anc 584 |
. . . . . 6
β’ (π β (πΌβπ) β (LSubSpβπ)) |
53 | 50, 52 | sseldd 3982 |
. . . . 5
β’ (π β (πΌβπ) β (SubGrpβπ)) |
54 | 19, 2, 7, 5, 48 | dihlss 40109 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β (πΌβπ) β (LSubSpβπ)) |
55 | 8, 32, 54 | syl2anc 584 |
. . . . . 6
β’ (π β (πΌβπ) β (LSubSpβπ)) |
56 | 50, 55 | sseldd 3982 |
. . . . 5
β’ (π β (πΌβπ) β (SubGrpβπ)) |
57 | 6 | lsmcom 19720 |
. . . . 5
β’ ((π β Abel β§ (πΌβπ) β (SubGrpβπ) β§ (πΌβπ) β (SubGrpβπ)) β ((πΌβπ) β (πΌβπ)) = ((πΌβπ) β (πΌβπ))) |
58 | 47, 53, 56, 57 | syl3anc 1371 |
. . . 4
β’ (π β ((πΌβπ) β (πΌβπ)) = ((πΌβπ) β (πΌβπ))) |
59 | 58 | adantr 481 |
. . 3
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β ((πΌβπ) β (πΌβπ)) = ((πΌβπ) β (πΌβπ))) |
60 | 39, 44, 59 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (Β¬ π(leβπΎ)π β§ π(leβπΎ)π)) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
61 | 8 | adantr 481 |
. . 3
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (πΎ β HL β§ π β π»)) |
62 | 10 | adantr 481 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β π β π΄) |
63 | | simprl 769 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β Β¬ π(leβπΎ)π) |
64 | 62, 63 | jca 512 |
. . 3
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (π β π΄ β§ Β¬ π(leβπΎ)π)) |
65 | 14 | adantr 481 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β π β π΄) |
66 | | simprr 771 |
. . . 4
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β Β¬ π(leβπΎ)π) |
67 | 65, 66 | jca 512 |
. . 3
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (π β π΄ β§ Β¬ π(leβπΎ)π)) |
68 | 1, 2, 3, 4, 5, 6, 7, 61, 64, 67 | dihjatcc 40281 |
. 2
β’ ((π β§ (Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π)) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
69 | 18, 29, 60, 68 | 4casesdan 1040 |
1
β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |