MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem3 Structured version   Visualization version   GIF version

Theorem unxpdomlem3 8570
Description: Lemma for unxpdom 8571. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem3 ((1o𝑎 ∧ 1o𝑏) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
Distinct variable group:   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom 8567 . . 3 (𝑎 ∈ V → (1o𝑎 ↔ ∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛))
21elv 3442 . 2 (1o𝑎 ↔ ∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛)
3 1sdom 8567 . . 3 (𝑏 ∈ V → (1o𝑏 ↔ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡))
43elv 3442 . 2 (1o𝑏 ↔ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡)
5 reeanv 3328 . . 3 (∃𝑚𝑎𝑠𝑏 (∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡) ↔ (∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡))
6 reeanv 3328 . . . . 5 (∃𝑛𝑎𝑡𝑏𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ↔ (∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡))
7 vex 3440 . . . . . . . . 9 𝑎 ∈ V
8 vex 3440 . . . . . . . . 9 𝑏 ∈ V
97, 8unex 7326 . . . . . . . 8 (𝑎𝑏) ∈ V
107, 8xpex 7333 . . . . . . . 8 (𝑎 × 𝑏) ∈ V
11 unxpdomlem1.2 . . . . . . . . . . 11 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
12 simpr 485 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑥𝑎) → 𝑥𝑎)
13 simp2r 1193 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑡𝑏)
14 simp1r 1191 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑠𝑏)
1513, 14ifcld 4426 . . . . . . . . . . . . . 14 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏)
1615ad2antrr 722 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑥𝑎) → if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏)
1712, 16opelxpd 5481 . . . . . . . . . . . 12 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑥𝑎) → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ ∈ (𝑎 × 𝑏))
18 simp2l 1192 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑛𝑎)
19 simp1l 1190 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑚𝑎)
2018, 19ifcld 4426 . . . . . . . . . . . . . 14 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎)
2120ad2antrr 722 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ ¬ 𝑥𝑎) → if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎)
22 simpr 485 . . . . . . . . . . . . . . 15 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → 𝑥 ∈ (𝑎𝑏))
23 elun 4046 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎𝑏) ↔ (𝑥𝑎𝑥𝑏))
2422, 23sylib 219 . . . . . . . . . . . . . 14 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → (𝑥𝑎𝑥𝑏))
2524orcanai 997 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ ¬ 𝑥𝑎) → 𝑥𝑏)
2621, 25opelxpd 5481 . . . . . . . . . . . 12 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ ¬ 𝑥𝑎) → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ ∈ (𝑎 × 𝑏))
2717, 26ifclda 4415 . . . . . . . . . . 11 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) ∈ (𝑎 × 𝑏))
2811, 27syl5eqel 2887 . . . . . . . . . 10 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → 𝐺 ∈ (𝑎 × 𝑏))
29 unxpdomlem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
3028, 29fmptd 6741 . . . . . . . . 9 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝐹:(𝑎𝑏)⟶(𝑎 × 𝑏))
3129, 11unxpdomlem1 8568 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
3231ad2antrl 724 . . . . . . . . . . . . . . 15 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
33 iftrue 4387 . . . . . . . . . . . . . . . 16 (𝑧𝑎 → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
3433adantr 481 . . . . . . . . . . . . . . 15 ((𝑧𝑎𝑤𝑎) → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
3532, 34sylan9eq 2851 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → (𝐹𝑧) = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
3629, 11unxpdomlem1 8568 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑎𝑏) → (𝐹𝑤) = if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩))
3736ad2antll 725 . . . . . . . . . . . . . . 15 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → (𝐹𝑤) = if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩))
38 iftrue 4387 . . . . . . . . . . . . . . . 16 (𝑤𝑎 → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩)
3938adantl 482 . . . . . . . . . . . . . . 15 ((𝑧𝑎𝑤𝑎) → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩)
4037, 39sylan9eq 2851 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → (𝐹𝑤) = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩)
4135, 40eqeq12d 2810 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩))
42 vex 3440 . . . . . . . . . . . . . 14 𝑧 ∈ V
43 vex 3440 . . . . . . . . . . . . . . 15 𝑡 ∈ V
44 vex 3440 . . . . . . . . . . . . . . 15 𝑠 ∈ V
4543, 44ifex 4429 . . . . . . . . . . . . . 14 if(𝑧 = 𝑚, 𝑡, 𝑠) ∈ V
4642, 45opth1 5259 . . . . . . . . . . . . 13 (⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩ → 𝑧 = 𝑤)
4741, 46syl6bi 254 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
48 simprr 769 . . . . . . . . . . . . . 14 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → 𝑤 ∈ (𝑎𝑏))
49 simpll 763 . . . . . . . . . . . . . 14 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → ¬ 𝑚 = 𝑛)
50 simplr 765 . . . . . . . . . . . . . 14 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → ¬ 𝑠 = 𝑡)
5129, 11, 48, 49, 50unxpdomlem2 8569 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ¬ (𝐹𝑧) = (𝐹𝑤))
5251pm2.21d 121 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
53 eqcom 2802 . . . . . . . . . . . . 13 ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑤) = (𝐹𝑧))
54 simprl 767 . . . . . . . . . . . . . . . 16 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → 𝑧 ∈ (𝑎𝑏))
5529, 11, 54, 49, 50unxpdomlem2 8569 . . . . . . . . . . . . . . 15 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑤𝑎 ∧ ¬ 𝑧𝑎)) → ¬ (𝐹𝑤) = (𝐹𝑧))
5655ancom2s 646 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎𝑤𝑎)) → ¬ (𝐹𝑤) = (𝐹𝑧))
5756pm2.21d 121 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎𝑤𝑎)) → ((𝐹𝑤) = (𝐹𝑧) → 𝑧 = 𝑤))
5853, 57syl5bi 243 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
59 iffalse 4390 . . . . . . . . . . . . . . . 16 𝑧𝑎 → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
6059adantr 481 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎) → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
6132, 60sylan9eq 2851 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → (𝐹𝑧) = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
62 iffalse 4390 . . . . . . . . . . . . . . . 16 𝑤𝑎 → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩)
6362adantl 482 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎) → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩)
6437, 63sylan9eq 2851 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → (𝐹𝑤) = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩)
6561, 64eqeq12d 2810 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩))
66 vex 3440 . . . . . . . . . . . . . . . 16 𝑛 ∈ V
67 vex 3440 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
6866, 67ifex 4429 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑡, 𝑛, 𝑚) ∈ V
6968, 42opth 5260 . . . . . . . . . . . . . 14 (⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩ ↔ (if(𝑧 = 𝑡, 𝑛, 𝑚) = if(𝑤 = 𝑡, 𝑛, 𝑚) ∧ 𝑧 = 𝑤))
7069simprbi 497 . . . . . . . . . . . . 13 (⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩ → 𝑧 = 𝑤)
7165, 70syl6bi 254 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7247, 52, 58, 714casesdan 1034 . . . . . . . . . . 11 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7372ralrimivva 3158 . . . . . . . . . 10 ((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → ∀𝑧 ∈ (𝑎𝑏)∀𝑤 ∈ (𝑎𝑏)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
74733ad2ant3 1128 . . . . . . . . 9 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → ∀𝑧 ∈ (𝑎𝑏)∀𝑤 ∈ (𝑎𝑏)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
75 dff13 6878 . . . . . . . . 9 (𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏) ↔ (𝐹:(𝑎𝑏)⟶(𝑎 × 𝑏) ∧ ∀𝑧 ∈ (𝑎𝑏)∀𝑤 ∈ (𝑎𝑏)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
7630, 74, 75sylanbrc 583 . . . . . . . 8 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏))
77 f1dom2g 8375 . . . . . . . 8 (((𝑎𝑏) ∈ V ∧ (𝑎 × 𝑏) ∈ V ∧ 𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏)) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
789, 10, 76, 77mp3an12i 1457 . . . . . . 7 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
79783expia 1114 . . . . . 6 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏)) → ((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏)))
8079rexlimdvva 3257 . . . . 5 ((𝑚𝑎𝑠𝑏) → (∃𝑛𝑎𝑡𝑏𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏)))
816, 80syl5bir 244 . . . 4 ((𝑚𝑎𝑠𝑏) → ((∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏)))
8281rexlimivv 3255 . . 3 (∃𝑚𝑎𝑠𝑏 (∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
835, 82sylbir 236 . 2 ((∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
842, 4, 83syl2anb 597 1 ((1o𝑎 ∧ 1o𝑏) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106  Vcvv 3437  cun 3857  ifcif 4381  cop 4478   class class class wbr 4962  cmpt 5041   × cxp 5441  wf 6221  1-1wf1 6222  cfv 6225  1oc1o 7946  cdom 8355  csdm 8356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-1o 7953  df-2o 7954  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360
This theorem is referenced by:  unxpdom  8571
  Copyright terms: Public domain W3C validator