| Step | Hyp | Ref
| Expression |
| 1 | | 1sdom 9285 |
. . 3
⊢ (𝑎 ∈ V → (1o
≺ 𝑎 ↔
∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛)) |
| 2 | 1 | elv 3484 |
. 2
⊢
(1o ≺ 𝑎 ↔ ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛) |
| 3 | | 1sdom 9285 |
. . 3
⊢ (𝑏 ∈ V → (1o
≺ 𝑏 ↔
∃𝑠 ∈ 𝑏 ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡)) |
| 4 | 3 | elv 3484 |
. 2
⊢
(1o ≺ 𝑏 ↔ ∃𝑠 ∈ 𝑏 ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡) |
| 5 | | reeanv 3228 |
. . 3
⊢
(∃𝑚 ∈
𝑎 ∃𝑠 ∈ 𝑏 (∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡) ↔ (∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑠 ∈ 𝑏 ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡)) |
| 6 | | reeanv 3228 |
. . . . 5
⊢
(∃𝑛 ∈
𝑎 ∃𝑡 ∈ 𝑏 (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ↔ (∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡)) |
| 7 | | vex 3483 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 8 | | vex 3483 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 9 | 7, 8 | unex 7765 |
. . . . . . . 8
⊢ (𝑎 ∪ 𝑏) ∈ V |
| 10 | 7, 8 | xpex 7774 |
. . . . . . . 8
⊢ (𝑎 × 𝑏) ∈ V |
| 11 | | unxpdomlem1.2 |
. . . . . . . . . . 11
⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) |
| 12 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) ∧ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑎) |
| 13 | | simp2r 1200 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑡 ∈ 𝑏) |
| 14 | | simp1r 1198 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑠 ∈ 𝑏) |
| 15 | 13, 14 | ifcld 4571 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏) |
| 16 | 15 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) ∧ 𝑥 ∈ 𝑎) → if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏) |
| 17 | 12, 16 | opelxpd 5723 |
. . . . . . . . . . . 12
⊢
(((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) ∧ 𝑥 ∈ 𝑎) → 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉 ∈ (𝑎 × 𝑏)) |
| 18 | | simp2l 1199 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑛 ∈ 𝑎) |
| 19 | | simp1l 1197 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑚 ∈ 𝑎) |
| 20 | 18, 19 | ifcld 4571 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎) |
| 21 | 20 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) ∧ ¬ 𝑥 ∈ 𝑎) → if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎) |
| 22 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) → 𝑥 ∈ (𝑎 ∪ 𝑏)) |
| 23 | | elun 4152 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑎 ∪ 𝑏) ↔ (𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏)) |
| 24 | 22, 23 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) → (𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏)) |
| 25 | 24 | orcanai 1004 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) ∧ ¬ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑏) |
| 26 | 21, 25 | opelxpd 5723 |
. . . . . . . . . . . 12
⊢
(((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) ∧ ¬ 𝑥 ∈ 𝑎) → 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉 ∈ (𝑎 × 𝑏)) |
| 27 | 17, 26 | ifclda 4560 |
. . . . . . . . . . 11
⊢ ((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) → if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ∈ (𝑎 × 𝑏)) |
| 28 | 11, 27 | eqeltrid 2844 |
. . . . . . . . . 10
⊢ ((((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎 ∪ 𝑏)) → 𝐺 ∈ (𝑎 × 𝑏)) |
| 29 | | unxpdomlem1.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) |
| 30 | 28, 29 | fmptd 7133 |
. . . . . . . . 9
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝐹:(𝑎 ∪ 𝑏)⟶(𝑎 × 𝑏)) |
| 31 | 29, 11 | unxpdomlem1 9287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) |
| 32 | 31 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) |
| 33 | | iftrue 4530 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑎 → if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) = 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎) → if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) = 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉) |
| 35 | 32, 34 | sylan9eq 2796 |
. . . . . . . . . . . . . 14
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → (𝐹‘𝑧) = 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉) |
| 36 | 29, 11 | unxpdomlem1 9287 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑤) = if(𝑤 ∈ 𝑎, 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉)) |
| 37 | 36 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → (𝐹‘𝑤) = if(𝑤 ∈ 𝑎, 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉)) |
| 38 | | iftrue 4530 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ 𝑎 → if(𝑤 ∈ 𝑎, 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) = 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎) → if(𝑤 ∈ 𝑎, 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) = 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉) |
| 40 | 37, 39 | sylan9eq 2796 |
. . . . . . . . . . . . . 14
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → (𝐹‘𝑤) = 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉) |
| 41 | 35, 40 | eqeq12d 2752 |
. . . . . . . . . . . . 13
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉 = 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉)) |
| 42 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 43 | | vex 3483 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
| 44 | | vex 3483 |
. . . . . . . . . . . . . . 15
⊢ 𝑠 ∈ V |
| 45 | 43, 44 | ifex 4575 |
. . . . . . . . . . . . . 14
⊢ if(𝑧 = 𝑚, 𝑡, 𝑠) ∈ V |
| 46 | 42, 45 | opth1 5479 |
. . . . . . . . . . . . 13
⊢
(〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉 = 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉 → 𝑧 = 𝑤) |
| 47 | 41, 46 | biimtrdi 253 |
. . . . . . . . . . . 12
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 48 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → 𝑤 ∈ (𝑎 ∪ 𝑏)) |
| 49 | | simpll 766 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → ¬ 𝑚 = 𝑛) |
| 50 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → ¬ 𝑠 = 𝑡) |
| 51 | 29, 11, 48, 49, 50 | unxpdomlem2 9288 |
. . . . . . . . . . . . 13
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 52 | 51 | pm2.21d 121 |
. . . . . . . . . . . 12
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 53 | | eqcom 2743 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 54 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → 𝑧 ∈ (𝑎 ∪ 𝑏)) |
| 55 | 29, 11, 54, 49, 50 | unxpdomlem2 9288 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (𝑤 ∈ 𝑎 ∧ ¬ 𝑧 ∈ 𝑎)) → ¬ (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 56 | 55 | ancom2s 650 |
. . . . . . . . . . . . . 14
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 57 | 56 | pm2.21d 121 |
. . . . . . . . . . . . 13
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑤) = (𝐹‘𝑧) → 𝑧 = 𝑤)) |
| 58 | 53, 57 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 59 | | iffalse 4533 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑧 ∈ 𝑎 → if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) = 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎) → if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) = 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) |
| 61 | 32, 60 | sylan9eq 2796 |
. . . . . . . . . . . . . 14
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → (𝐹‘𝑧) = 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) |
| 62 | | iffalse 4533 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑤 ∈ 𝑎 → if(𝑤 ∈ 𝑎, 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) = 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎) → if(𝑤 ∈ 𝑎, 〈𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) = 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) |
| 64 | 37, 63 | sylan9eq 2796 |
. . . . . . . . . . . . . 14
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → (𝐹‘𝑤) = 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉) |
| 65 | 61, 64 | eqeq12d 2752 |
. . . . . . . . . . . . 13
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉 = 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉)) |
| 66 | | vex 3483 |
. . . . . . . . . . . . . . . 16
⊢ 𝑛 ∈ V |
| 67 | | vex 3483 |
. . . . . . . . . . . . . . . 16
⊢ 𝑚 ∈ V |
| 68 | 66, 67 | ifex 4575 |
. . . . . . . . . . . . . . 15
⊢ if(𝑧 = 𝑡, 𝑛, 𝑚) ∈ V |
| 69 | 68, 42 | opth 5480 |
. . . . . . . . . . . . . 14
⊢
(〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉 = 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉 ↔ (if(𝑧 = 𝑡, 𝑛, 𝑚) = if(𝑤 = 𝑡, 𝑛, 𝑚) ∧ 𝑧 = 𝑤)) |
| 70 | 69 | simprbi 496 |
. . . . . . . . . . . . 13
⊢
(〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉 = 〈if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤〉 → 𝑧 = 𝑤) |
| 71 | 65, 70 | biimtrdi 253 |
. . . . . . . . . . . 12
⊢ ((((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) ∧ (¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 72 | 47, 52, 58, 71 | 4casesdan 1041 |
. . . . . . . . . . 11
⊢ (((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎 ∪ 𝑏) ∧ 𝑤 ∈ (𝑎 ∪ 𝑏))) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 73 | 72 | ralrimivva 3201 |
. . . . . . . . . 10
⊢ ((¬
𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → ∀𝑧 ∈ (𝑎 ∪ 𝑏)∀𝑤 ∈ (𝑎 ∪ 𝑏)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 74 | 73 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → ∀𝑧 ∈ (𝑎 ∪ 𝑏)∀𝑤 ∈ (𝑎 ∪ 𝑏)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 75 | | dff13 7276 |
. . . . . . . . 9
⊢ (𝐹:(𝑎 ∪ 𝑏)–1-1→(𝑎 × 𝑏) ↔ (𝐹:(𝑎 ∪ 𝑏)⟶(𝑎 × 𝑏) ∧ ∀𝑧 ∈ (𝑎 ∪ 𝑏)∀𝑤 ∈ (𝑎 ∪ 𝑏)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 76 | 30, 74, 75 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝐹:(𝑎 ∪ 𝑏)–1-1→(𝑎 × 𝑏)) |
| 77 | | f1dom2g 9011 |
. . . . . . . 8
⊢ (((𝑎 ∪ 𝑏) ∈ V ∧ (𝑎 × 𝑏) ∈ V ∧ 𝐹:(𝑎 ∪ 𝑏)–1-1→(𝑎 × 𝑏)) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) |
| 78 | 9, 10, 76, 77 | mp3an12i 1466 |
. . . . . . 7
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) |
| 79 | 78 | 3expia 1121 |
. . . . . 6
⊢ (((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) ∧ (𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏)) → ((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏))) |
| 80 | 79 | rexlimdvva 3212 |
. . . . 5
⊢ ((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) → (∃𝑛 ∈ 𝑎 ∃𝑡 ∈ 𝑏 (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏))) |
| 81 | 6, 80 | biimtrrid 243 |
. . . 4
⊢ ((𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏) → ((∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏))) |
| 82 | 81 | rexlimivv 3200 |
. . 3
⊢
(∃𝑚 ∈
𝑎 ∃𝑠 ∈ 𝑏 (∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) |
| 83 | 5, 82 | sylbir 235 |
. 2
⊢
((∃𝑚 ∈
𝑎 ∃𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑠 ∈ 𝑏 ∃𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) |
| 84 | 2, 4, 83 | syl2anb 598 |
1
⊢
((1o ≺ 𝑎 ∧ 1o ≺ 𝑏) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) |