Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihord | Structured version Visualization version GIF version |
Description: The isomorphism H is order-preserving. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.) |
Ref | Expression |
---|---|
dihord.b | ⊢ 𝐵 = (Base‘𝐾) |
dihord.l | ⊢ ≤ = (le‘𝐾) |
dihord.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihord.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihord | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simpl2 1191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
3 | simprl 768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ≤ 𝑊) | |
4 | simpl3 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
5 | simprr 770 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ≤ 𝑊) | |
6 | dihord.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | dihord.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | dihord.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | dihord.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
10 | 6, 7, 8, 9 | dihord3 39492 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
11 | 1, 2, 3, 4, 5, 10 | syl122anc 1378 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
12 | simpl1 1190 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | simpl2 1191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
14 | simprl 768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → 𝑋 ≤ 𝑊) | |
15 | simpl3 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
16 | simprr 770 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → ¬ 𝑌 ≤ 𝑊) | |
17 | 6, 7, 8, 9 | dihord5a 39498 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → 𝑋 ≤ 𝑌) |
18 | 6, 7, 8, 9 | dihord5b 39494 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |
19 | 17, 18 | impbida 798 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
20 | 12, 13, 14, 15, 16, 19 | syl122anc 1378 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
21 | simpl1 1190 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
22 | simpl2 1191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
23 | simprl 768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → ¬ 𝑋 ≤ 𝑊) | |
24 | simpl3 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
25 | simprr 770 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ≤ 𝑊) | |
26 | 6, 7, 8, 9 | dihord6a 39496 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → 𝑋 ≤ 𝑌) |
27 | 6, 7, 8, 9 | dihord6b 39495 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≤ 𝑌) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |
28 | 26, 27 | impbida 798 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
29 | 21, 22, 23, 24, 25, 28 | syl122anc 1378 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
30 | simpl1 1190 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
31 | simpl2 1191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
32 | simprl 768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → ¬ 𝑋 ≤ 𝑊) | |
33 | simpl3 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
34 | simprr 770 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → ¬ 𝑌 ≤ 𝑊) | |
35 | 6, 7, 8, 9 | dihord4 39493 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
36 | 30, 31, 32, 33, 34, 35 | syl122anc 1378 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑋 ≤ 𝑊 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
37 | 11, 20, 29, 36 | 4casesdan 1039 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 class class class wbr 5087 ‘cfv 6466 Basecbs 16989 lecple 17046 HLchlt 37584 LHypclh 38219 DIsoHcdih 39463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-riotaBAD 37187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-tpos 8091 df-undef 8138 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-sca 17055 df-vsca 17056 df-0g 17229 df-proset 18090 df-poset 18108 df-plt 18125 df-lub 18141 df-glb 18142 df-join 18143 df-meet 18144 df-p0 18220 df-p1 18221 df-lat 18227 df-clat 18294 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-grp 18656 df-minusg 18657 df-sbg 18658 df-subg 18828 df-cntz 18999 df-lsm 19317 df-cmn 19463 df-abl 19464 df-mgp 19796 df-ur 19813 df-ring 19860 df-oppr 19937 df-dvdsr 19958 df-unit 19959 df-invr 19989 df-dvr 20000 df-drng 20072 df-lmod 20208 df-lss 20277 df-lsp 20317 df-lvec 20448 df-oposet 37410 df-ol 37412 df-oml 37413 df-covers 37500 df-ats 37501 df-atl 37532 df-cvlat 37556 df-hlat 37585 df-llines 37733 df-lplanes 37734 df-lvols 37735 df-lines 37736 df-psubsp 37738 df-pmap 37739 df-padd 38031 df-lhyp 38223 df-laut 38224 df-ldil 38339 df-ltrn 38340 df-trl 38394 df-tendo 38990 df-edring 38992 df-disoa 39264 df-dvech 39314 df-dib 39374 df-dic 39408 df-dih 39464 |
This theorem is referenced by: dih11 39500 dihcnvord 39509 dihmeetlem1N 39525 dihglblem5apreN 39526 dihglblem5aN 39527 dihglblem4 39532 dihmeetlem9N 39550 dihmeetlem11N 39552 dihlspsnat 39568 dihglblem6 39575 dochvalr 39592 dochss 39600 dvh4dimat 39673 |
Copyright terms: Public domain | W3C validator |