Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq1i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq1i.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
Ref | Expression |
---|---|
abeq1i | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq1i.1 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
2 | 1 | eqcomi 2747 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
3 | 2 | abeq2i 2874 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
4 | 3 | bicomi 223 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |