![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abeq2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq2i.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2i.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | abeq2d 2914 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1527 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1520 ⊤wtru 1521 ∈ wcel 2079 {cab 2773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-tru 1523 df-ex 1760 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 |
This theorem is referenced by: abeq1i 2916 rabid 3334 vexOLD 3436 csbco 3820 csbgfi 3824 csbnestgf 4285 ssrel 5535 relopabi 5572 cnv0 5867 funcnv3 6286 opabiota 6605 zfrep6 7503 wfrlem2 7797 wfrlem3 7798 wfrlem4 7800 wfrlem4OLD 7801 wfrdmcl 7806 tfrlem4 7858 tfrlem8 7863 tfrlem9 7864 ixpn0 8332 sbthlem1 8464 dffi3 8731 1idpr 10286 ltexprlem1 10293 ltexprlem2 10294 ltexprlem3 10295 ltexprlem4 10296 ltexprlem6 10298 ltexprlem7 10299 reclem2pr 10305 reclem3pr 10306 reclem4pr 10307 supsrlem 10368 dissnref 21808 dissnlocfin 21809 txbas 21847 xkoccn 21899 xkoptsub 21934 xkoco1cn 21937 xkoco2cn 21938 xkoinjcn 21967 mbfi1fseqlem4 23990 avril1 27921 rnmposs 30082 bnj1436 31684 bnj916 31777 bnj983 31795 bnj1083 31820 bnj1245 31856 bnj1311 31866 bnj1371 31871 bnj1398 31876 setinds 32576 frrlem2 32678 frrlem3 32679 frrlem4 32680 frrlem8 32684 bj-ififc 33465 bj-elsngl 33831 bj-projun 33857 bj-projval 33859 f1omptsnlem 34094 icoreresf 34110 finxp0 34149 finxp1o 34150 finxpsuclem 34155 sdclem1 34496 csbcom2fi 34886 |
Copyright terms: Public domain | W3C validator |