Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq2i.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2i.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | abeq2d 2875 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⊤wtru 1542 ∈ wcel 2109 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: abeq1i 2877 rabid 3308 csbcow 3851 csbco 3852 csbgfi 3857 csbnestgfw 4358 csbnestgf 4363 ssrel 5691 relopabi 5729 cnv0 6041 funcnv3 6500 opabiota 6845 zfrep6 7784 frrlem2 8087 frrlem3 8088 frrlem4 8089 frrlem8 8093 fprresex 8110 wfrlem2OLD 8124 wfrlem3OLD 8125 wfrlem4OLD 8127 wfrdmclOLD 8132 tfrlem4 8194 tfrlem8 8199 tfrlem9 8200 ixpn0 8692 sbthlem1 8839 dffi3 9151 1idpr 10769 ltexprlem1 10776 ltexprlem2 10777 ltexprlem3 10778 ltexprlem4 10779 ltexprlem6 10781 ltexprlem7 10782 reclem2pr 10788 reclem3pr 10789 reclem4pr 10790 supsrlem 10851 dissnref 22660 dissnlocfin 22661 txbas 22699 xkoccn 22751 xkoptsub 22786 xkoco1cn 22789 xkoco2cn 22790 xkoinjcn 22819 mbfi1fseqlem4 24864 avril1 28806 rnmposs 30990 bnj1436 32798 bnj916 32892 bnj983 32910 bnj1083 32937 bnj1245 32973 bnj1311 32983 bnj1371 32988 bnj1398 32993 setinds 33733 bj-elsngl 35137 bj-projun 35163 bj-projval 35165 f1omptsnlem 35486 icoreresf 35502 finxp0 35541 finxp1o 35542 finxpsuclem 35547 sdclem1 35880 csbcom2fi 36265 rr-grothshortbi 41874 upwordisword 46465 |
Copyright terms: Public domain | W3C validator |