Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq2i.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2i.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | abeq2d 2873 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 {cab 2714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 |
This theorem is referenced by: abeq1i 2875 rabid 3422 csbcow 3856 csbco 3857 csbgfi 3862 csbnestgfw 4363 csbnestgf 4368 ssrelOLD 5710 relopabi 5749 cnv0 6064 funcnv3 6538 opabiota 6888 zfrep6 7840 frrlem2 8148 frrlem3 8149 frrlem4 8150 frrlem8 8154 fprresex 8171 wfrlem2OLD 8185 wfrlem3OLD 8186 wfrlem4OLD 8188 wfrdmclOLD 8193 tfrlem4 8255 tfrlem8 8260 tfrlem9 8261 ixpn0 8764 sbthlem1 8923 dffi3 9258 1idpr 10855 ltexprlem1 10862 ltexprlem2 10863 ltexprlem3 10864 ltexprlem4 10865 ltexprlem6 10867 ltexprlem7 10868 reclem2pr 10874 reclem3pr 10875 reclem4pr 10876 supsrlem 10937 dissnref 22750 dissnlocfin 22751 txbas 22789 xkoccn 22841 xkoptsub 22876 xkoco1cn 22879 xkoco2cn 22880 xkoinjcn 22909 mbfi1fseqlem4 24954 avril1 28935 rnmposs 31119 bnj1436 32925 bnj916 33019 bnj983 33037 bnj1083 33064 bnj1245 33100 bnj1311 33110 bnj1371 33115 bnj1398 33120 setinds 33856 bj-elsngl 35218 bj-projun 35244 bj-projval 35246 f1omptsnlem 35567 icoreresf 35583 finxp0 35622 finxp1o 35623 finxpsuclem 35628 sdclem1 35961 csbcom2fi 36346 rr-grothshortbi 42149 upwordisword 46775 tworepnotupword 46780 |
Copyright terms: Public domain | W3C validator |