Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abeq2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq2i.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2i.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | abeq2d 2872 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 {cab 2713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 |
This theorem is referenced by: abeq1i 2874 rabid 3322 csbcow 3852 csbco 3853 csbgfi 3858 csbnestgfw 4359 csbnestgf 4364 ssrelOLD 5705 relopabi 5744 cnv0 6059 funcnv3 6533 opabiota 6883 zfrep6 7829 frrlem2 8134 frrlem3 8135 frrlem4 8136 frrlem8 8140 fprresex 8157 wfrlem2OLD 8171 wfrlem3OLD 8172 wfrlem4OLD 8174 wfrdmclOLD 8179 tfrlem4 8241 tfrlem8 8246 tfrlem9 8247 ixpn0 8749 sbthlem1 8908 dffi3 9234 1idpr 10831 ltexprlem1 10838 ltexprlem2 10839 ltexprlem3 10840 ltexprlem4 10841 ltexprlem6 10843 ltexprlem7 10844 reclem2pr 10850 reclem3pr 10851 reclem4pr 10852 supsrlem 10913 dissnref 22724 dissnlocfin 22725 txbas 22763 xkoccn 22815 xkoptsub 22850 xkoco1cn 22853 xkoco2cn 22854 xkoinjcn 22883 mbfi1fseqlem4 24928 avril1 28872 rnmposs 31056 bnj1436 32864 bnj916 32958 bnj983 32976 bnj1083 33003 bnj1245 33039 bnj1311 33049 bnj1371 33054 bnj1398 33059 setinds 33799 bj-elsngl 35202 bj-projun 35228 bj-projval 35230 f1omptsnlem 35551 icoreresf 35567 finxp0 35606 finxp1o 35607 finxpsuclem 35612 sdclem1 35945 csbcom2fi 36330 rr-grothshortbi 41959 upwordisword 46574 tworepnotupword 46579 |
Copyright terms: Public domain | W3C validator |