Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi2dv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbi2dv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | sbbidv 2082 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
3 | clelsb1 2866 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
4 | 3 | bicomi 223 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
5 | df-clab 2716 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | eqrdv 2736 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: abbi1dv 2878 abbi2i 2879 sbab 2886 iftrue 4465 iffalse 4468 dfopifOLD 4801 iniseg 6005 setlikespec 6228 fncnvima2 6938 isoini 7209 dftpos3 8060 mapsnd 8674 hartogslem1 9301 r1val2 9595 cardval2 9749 dfac3 9877 wrdval 14220 wrdnval 14248 submacs 18465 ablsimpgfind 19713 dfrhm2 19961 lsppr 20355 rspsn 20525 znunithash 20772 tgval3 22113 txrest 22782 xkoptsub 22805 cnextf 23217 cnblcld 23938 shft2rab 24672 sca2rab 24676 grpoinvf 28894 elpjrn 30552 ofrn2 30977 addscllem1 34131 neibastop3 34551 ecres2 36414 lkrval2 37104 lshpset2N 37133 hdmapoc 39945 submgmacs 45358 |
Copyright terms: Public domain | W3C validator |