Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi2dv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbi2dv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | sbbidv 2084 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
3 | clelsb3 2879 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
4 | 3 | bicomi 227 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
5 | df-clab 2736 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3bitr4g 317 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | eqrdv 2756 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 [wsb 2069 ∈ wcel 2111 {cab 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 |
This theorem is referenced by: abbi1dv 2890 abbi2i 2891 sbab 2898 iftrue 4429 iffalse 4432 dfopifOLD 4761 iniseg 5937 setlikespec 6152 fncnvima2 6827 isoini 7091 dftpos3 7926 mapsnd 8481 hartogslem1 9052 r1val2 9312 cardval2 9466 dfac3 9594 wrdval 13929 wrdnval 13957 submacs 18070 ablsimpgfind 19313 dfrhm2 19553 lsppr 19946 rspsn 20108 znunithash 20345 tgval3 21676 txrest 22344 xkoptsub 22367 cnextf 22779 cnblcld 23489 shft2rab 24221 sca2rab 24225 grpoinvf 28427 elpjrn 30085 ofrn2 30512 addscllem1 33714 neibastop3 34134 ecres2 36010 lkrval2 36700 lshpset2N 36729 hdmapoc 39541 submgmacs 44840 |
Copyright terms: Public domain | W3C validator |