Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi2dv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2156. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbi2dv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | sbbidv 2083 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
3 | clelsb1 2866 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
4 | 3 | bicomi 223 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
5 | df-clab 2716 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | eqrdv 2736 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: abbi1dv 2877 abbi2i 2878 sbab 2885 iftrue 4462 iffalse 4465 dfopifOLD 4798 iniseg 5994 setlikespec 6217 fncnvima2 6920 isoini 7189 dftpos3 8031 mapsnd 8632 hartogslem1 9231 r1val2 9526 cardval2 9680 dfac3 9808 wrdval 14148 wrdnval 14176 submacs 18380 ablsimpgfind 19628 dfrhm2 19876 lsppr 20270 rspsn 20438 znunithash 20684 tgval3 22021 txrest 22690 xkoptsub 22713 cnextf 23125 cnblcld 23844 shft2rab 24577 sca2rab 24581 grpoinvf 28795 elpjrn 30453 ofrn2 30878 addscllem1 34058 neibastop3 34478 ecres2 36341 lkrval2 37031 lshpset2N 37060 hdmapoc 39872 submgmacs 45246 |
Copyright terms: Public domain | W3C validator |