MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi2dv Structured version   Visualization version   GIF version

Theorem abbi2dv 2877
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.)
Hypothesis
Ref Expression
abbi2dv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
abbi2dv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi2dv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 abbi2dv.1 . . . 4 (𝜑 → (𝑥𝐴𝜓))
21sbbidv 2082 . . 3 (𝜑 → ([𝑦 / 𝑥]𝑥𝐴 ↔ [𝑦 / 𝑥]𝜓))
3 clelsb1 2866 . . . 4 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
43bicomi 223 . . 3 (𝑦𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
5 df-clab 2716 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
62, 4, 53bitr4g 314 . 2 (𝜑 → (𝑦𝐴𝑦 ∈ {𝑥𝜓}))
76eqrdv 2736 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  [wsb 2067  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  abbi1dv  2878  abbi2i  2879  sbab  2886  iftrue  4465  iffalse  4468  dfopifOLD  4801  iniseg  6005  setlikespec  6228  fncnvima2  6938  isoini  7209  dftpos3  8060  mapsnd  8674  hartogslem1  9301  r1val2  9595  cardval2  9749  dfac3  9877  wrdval  14220  wrdnval  14248  submacs  18465  ablsimpgfind  19713  dfrhm2  19961  lsppr  20355  rspsn  20525  znunithash  20772  tgval3  22113  txrest  22782  xkoptsub  22805  cnextf  23217  cnblcld  23938  shft2rab  24672  sca2rab  24676  grpoinvf  28894  elpjrn  30552  ofrn2  30977  addscllem1  34131  neibastop3  34551  ecres2  36414  lkrval2  37104  lshpset2N  37133  hdmapoc  39945  submgmacs  45358
  Copyright terms: Public domain W3C validator