![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbi2dv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2126. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbi2dv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | sbbidv 2057 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
3 | clelsb3 2910 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
4 | 3 | bicomi 225 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
5 | df-clab 2776 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3bitr4g 315 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | eqrdv 2793 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 [wsb 2042 ∈ wcel 2081 {cab 2775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 |
This theorem is referenced by: abbi1dv 2921 abbi2i 2922 sbab 2932 iftrue 4387 iffalse 4390 dfopif 4707 iniseg 5836 setlikespec 6044 fncnvima2 6696 isoini 6954 dftpos3 7761 mapsnd 8299 hartogslem1 8852 r1val2 9112 cardval2 9266 dfac3 9393 wrdval 13710 wrdnval 13742 submacs 17804 dfrhm2 19159 lsppr 19555 rspsn 19716 znunithash 20393 tgval3 21255 txrest 21923 xkoptsub 21946 cnextf 22358 cnblcld 23066 shft2rab 23792 sca2rab 23796 grpoinvf 28000 elpjrn 29658 ofrn2 30077 neibastop3 33320 ecres2 35087 lkrval2 35776 lshpset2N 35805 hdmapoc 38617 ablsimpgfind 40186 submgmacs 43573 |
Copyright terms: Public domain | W3C validator |