Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0xmulclb Structured version   Visualization version   GIF version

Theorem nn0xmulclb 31088
Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
nn0xmulclb (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))

Proof of Theorem nn0xmulclb
StepHypRef Expression
1 simplr 766 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
2 simpr 485 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32oveq1d 7284 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
4 xnn0xr 12308 . . . . . . . 8 (𝐵 ∈ ℕ0*𝐵 ∈ ℝ*)
54ad5antlr 732 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
6 simp-5r 783 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0*)
7 simprr 770 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
87ad3antrrr 727 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ≠ 0)
9 xnn0gt0 31086 . . . . . . . 8 ((𝐵 ∈ ℕ0*𝐵 ≠ 0) → 0 < 𝐵)
106, 8, 9syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 0 < 𝐵)
11 xmulpnf2 13006 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
125, 10, 11syl2anc 584 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐵) = +∞)
13 pnfnre2 11016 . . . . . . . 8 ¬ +∞ ∈ ℝ
14 nn0re 12240 . . . . . . . 8 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
1513, 14mto 196 . . . . . . 7 ¬ +∞ ∈ ℕ0
1615a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ +∞ ∈ ℕ0)
1712, 16eqneltrd 2860 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (+∞ ·e 𝐵) ∈ ℕ0)
183, 17eqneltrd 2860 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
19 simpr 485 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐵 = +∞)
2019oveq2d 7285 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
21 xnn0xr 12308 . . . . . . . 8 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2221ad5antr 731 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
23 simp-5l 782 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℕ0*)
24 simprl 768 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
2524ad3antrrr 727 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ≠ 0)
26 xnn0gt0 31086 . . . . . . . 8 ((𝐴 ∈ ℕ0*𝐴 ≠ 0) → 0 < 𝐴)
2723, 25, 26syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 0 < 𝐴)
28 xmulpnf1 13005 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
2922, 27, 28syl2anc 584 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e +∞) = +∞)
3015a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ +∞ ∈ ℕ0)
3129, 30eqneltrd 2860 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e +∞) ∈ ℕ0)
3220, 31eqneltrd 2860 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
33 xnn0nnn0pnf 12316 . . . . . . . 8 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3433ad5ant15 756 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3534ex 413 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0𝐴 = +∞))
36 xnn0nnn0pnf 12316 . . . . . . . 8 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3736ad5ant25 759 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3837ex 413 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐵 ∈ ℕ0𝐵 = +∞))
3935, 38orim12d 962 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → (𝐴 = +∞ ∨ 𝐵 = +∞)))
40 pm3.13 992 . . . . 5 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
4139, 40impel 506 . . . 4 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 = +∞ ∨ 𝐵 = +∞))
4218, 32, 41mpjaodan 956 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
431, 42condan 815 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
44 nn0re 12240 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4544ad2antrl 725 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐴 ∈ ℝ)
46 nn0re 12240 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
4746ad2antll 726 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐵 ∈ ℝ)
48 rexmul 13002 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
4945, 47, 48syl2anc 584 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
50 nn0mulcl 12267 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
5150adantl 482 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 · 𝐵) ∈ ℕ0)
5249, 51eqeltrd 2841 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
5343, 52impbida 798 1 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  (class class class)co 7269  cr 10869  0cc0 10870   · cmul 10875  +∞cpnf 11005  *cxr 11007   < clt 11008  0cn0 12231  0*cxnn0 12303   ·e cxmu 12844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-n0 12232  df-xnn0 12304  df-xmul 12847
This theorem is referenced by:  finexttrb  31731
  Copyright terms: Public domain W3C validator