Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0xmulclb Structured version   Visualization version   GIF version

Theorem nn0xmulclb 32667
Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
nn0xmulclb (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))

Proof of Theorem nn0xmulclb
StepHypRef Expression
1 simplr 768 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
2 simpr 484 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32oveq1d 7384 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
4 xnn0xr 12496 . . . . . . . 8 (𝐵 ∈ ℕ0*𝐵 ∈ ℝ*)
54ad5antlr 735 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
6 simp-5r 785 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0*)
7 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
87ad3antrrr 730 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ≠ 0)
9 xnn0gt0 32665 . . . . . . . 8 ((𝐵 ∈ ℕ0*𝐵 ≠ 0) → 0 < 𝐵)
106, 8, 9syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 0 < 𝐵)
11 xmulpnf2 13211 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
125, 10, 11syl2anc 584 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐵) = +∞)
13 pnfnre2 11192 . . . . . . . 8 ¬ +∞ ∈ ℝ
14 nn0re 12427 . . . . . . . 8 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
1513, 14mto 197 . . . . . . 7 ¬ +∞ ∈ ℕ0
1615a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ +∞ ∈ ℕ0)
1712, 16eqneltrd 2848 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (+∞ ·e 𝐵) ∈ ℕ0)
183, 17eqneltrd 2848 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
19 simpr 484 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐵 = +∞)
2019oveq2d 7385 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
21 xnn0xr 12496 . . . . . . . 8 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2221ad5antr 734 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
23 simp-5l 784 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℕ0*)
24 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
2524ad3antrrr 730 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ≠ 0)
26 xnn0gt0 32665 . . . . . . . 8 ((𝐴 ∈ ℕ0*𝐴 ≠ 0) → 0 < 𝐴)
2723, 25, 26syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 0 < 𝐴)
28 xmulpnf1 13210 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
2922, 27, 28syl2anc 584 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e +∞) = +∞)
3015a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ +∞ ∈ ℕ0)
3129, 30eqneltrd 2848 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e +∞) ∈ ℕ0)
3220, 31eqneltrd 2848 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
33 xnn0nnn0pnf 12504 . . . . . . . 8 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3433ad5ant15 758 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3534ex 412 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0𝐴 = +∞))
36 xnn0nnn0pnf 12504 . . . . . . . 8 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3736ad5ant25 761 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3837ex 412 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐵 ∈ ℕ0𝐵 = +∞))
3935, 38orim12d 966 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → (𝐴 = +∞ ∨ 𝐵 = +∞)))
40 pm3.13 996 . . . . 5 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
4139, 40impel 505 . . . 4 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 = +∞ ∨ 𝐵 = +∞))
4218, 32, 41mpjaodan 960 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
431, 42condan 817 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
44 nn0re 12427 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4544ad2antrl 728 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐴 ∈ ℝ)
46 nn0re 12427 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
4746ad2antll 729 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐵 ∈ ℝ)
48 rexmul 13207 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
4945, 47, 48syl2anc 584 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
50 nn0mulcl 12454 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
5150adantl 481 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 · 𝐵) ∈ ℕ0)
5249, 51eqeltrd 2828 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
5343, 52impbida 800 1 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  0cn0 12418  0*cxnn0 12491   ·e cxmu 13047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-xmul 13050
This theorem is referenced by:  finexttrb  33633
  Copyright terms: Public domain W3C validator