Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0xmulclb Structured version   Visualization version   GIF version

Theorem nn0xmulclb 32778
Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
nn0xmulclb (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))

Proof of Theorem nn0xmulclb
StepHypRef Expression
1 simplr 768 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
2 simpr 484 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32oveq1d 7463 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
4 xnn0xr 12630 . . . . . . . 8 (𝐵 ∈ ℕ0*𝐵 ∈ ℝ*)
54ad5antlr 734 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
6 simp-5r 785 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0*)
7 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
87ad3antrrr 729 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ≠ 0)
9 xnn0gt0 32776 . . . . . . . 8 ((𝐵 ∈ ℕ0*𝐵 ≠ 0) → 0 < 𝐵)
106, 8, 9syl2anc 583 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 0 < 𝐵)
11 xmulpnf2 13337 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
125, 10, 11syl2anc 583 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐵) = +∞)
13 pnfnre2 11332 . . . . . . . 8 ¬ +∞ ∈ ℝ
14 nn0re 12562 . . . . . . . 8 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
1513, 14mto 197 . . . . . . 7 ¬ +∞ ∈ ℕ0
1615a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ +∞ ∈ ℕ0)
1712, 16eqneltrd 2864 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (+∞ ·e 𝐵) ∈ ℕ0)
183, 17eqneltrd 2864 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
19 simpr 484 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐵 = +∞)
2019oveq2d 7464 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
21 xnn0xr 12630 . . . . . . . 8 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2221ad5antr 733 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
23 simp-5l 784 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℕ0*)
24 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
2524ad3antrrr 729 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ≠ 0)
26 xnn0gt0 32776 . . . . . . . 8 ((𝐴 ∈ ℕ0*𝐴 ≠ 0) → 0 < 𝐴)
2723, 25, 26syl2anc 583 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 0 < 𝐴)
28 xmulpnf1 13336 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
2922, 27, 28syl2anc 583 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e +∞) = +∞)
3015a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ +∞ ∈ ℕ0)
3129, 30eqneltrd 2864 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e +∞) ∈ ℕ0)
3220, 31eqneltrd 2864 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
33 xnn0nnn0pnf 12638 . . . . . . . 8 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3433ad5ant15 758 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3534ex 412 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0𝐴 = +∞))
36 xnn0nnn0pnf 12638 . . . . . . . 8 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3736ad5ant25 761 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3837ex 412 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐵 ∈ ℕ0𝐵 = +∞))
3935, 38orim12d 965 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → (𝐴 = +∞ ∨ 𝐵 = +∞)))
40 pm3.13 995 . . . . 5 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
4139, 40impel 505 . . . 4 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 = +∞ ∨ 𝐵 = +∞))
4218, 32, 41mpjaodan 959 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
431, 42condan 817 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
44 nn0re 12562 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4544ad2antrl 727 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐴 ∈ ℝ)
46 nn0re 12562 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
4746ad2antll 728 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐵 ∈ ℝ)
48 rexmul 13333 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
4945, 47, 48syl2anc 583 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
50 nn0mulcl 12589 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
5150adantl 481 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 · 𝐵) ∈ ℕ0)
5249, 51eqeltrd 2844 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
5343, 52impbida 800 1 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  0cn0 12553  0*cxnn0 12625   ·e cxmu 13174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-xmul 13177
This theorem is referenced by:  finexttrb  33675
  Copyright terms: Public domain W3C validator