Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0xmulclb Structured version   Visualization version   GIF version

Theorem nn0xmulclb 32775
Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
nn0xmulclb (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))

Proof of Theorem nn0xmulclb
StepHypRef Expression
1 simplr 769 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
2 simpr 484 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32oveq1d 7446 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
4 xnn0xr 12604 . . . . . . . 8 (𝐵 ∈ ℕ0*𝐵 ∈ ℝ*)
54ad5antlr 735 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
6 simp-5r 786 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0*)
7 simprr 773 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
87ad3antrrr 730 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ≠ 0)
9 xnn0gt0 32773 . . . . . . . 8 ((𝐵 ∈ ℕ0*𝐵 ≠ 0) → 0 < 𝐵)
106, 8, 9syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 0 < 𝐵)
11 xmulpnf2 13317 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
125, 10, 11syl2anc 584 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐵) = +∞)
13 pnfnre2 11303 . . . . . . . 8 ¬ +∞ ∈ ℝ
14 nn0re 12535 . . . . . . . 8 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
1513, 14mto 197 . . . . . . 7 ¬ +∞ ∈ ℕ0
1615a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ +∞ ∈ ℕ0)
1712, 16eqneltrd 2861 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (+∞ ·e 𝐵) ∈ ℕ0)
183, 17eqneltrd 2861 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
19 simpr 484 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐵 = +∞)
2019oveq2d 7447 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
21 xnn0xr 12604 . . . . . . . 8 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2221ad5antr 734 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
23 simp-5l 785 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℕ0*)
24 simprl 771 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
2524ad3antrrr 730 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ≠ 0)
26 xnn0gt0 32773 . . . . . . . 8 ((𝐴 ∈ ℕ0*𝐴 ≠ 0) → 0 < 𝐴)
2723, 25, 26syl2anc 584 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 0 < 𝐴)
28 xmulpnf1 13316 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
2922, 27, 28syl2anc 584 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e +∞) = +∞)
3015a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ +∞ ∈ ℕ0)
3129, 30eqneltrd 2861 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e +∞) ∈ ℕ0)
3220, 31eqneltrd 2861 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
33 xnn0nnn0pnf 12612 . . . . . . . 8 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3433ad5ant15 759 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3534ex 412 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0𝐴 = +∞))
36 xnn0nnn0pnf 12612 . . . . . . . 8 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3736ad5ant25 762 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3837ex 412 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐵 ∈ ℕ0𝐵 = +∞))
3935, 38orim12d 967 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → (𝐴 = +∞ ∨ 𝐵 = +∞)))
40 pm3.13 997 . . . . 5 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
4139, 40impel 505 . . . 4 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 = +∞ ∨ 𝐵 = +∞))
4218, 32, 41mpjaodan 961 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
431, 42condan 818 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
44 nn0re 12535 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4544ad2antrl 728 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐴 ∈ ℝ)
46 nn0re 12535 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
4746ad2antll 729 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐵 ∈ ℝ)
48 rexmul 13313 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
4945, 47, 48syl2anc 584 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
50 nn0mulcl 12562 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
5150adantl 481 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 · 𝐵) ∈ ℕ0)
5249, 51eqeltrd 2841 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
5343, 52impbida 801 1 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  0cn0 12526  0*cxnn0 12599   ·e cxmu 13153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-xmul 13156
This theorem is referenced by:  finexttrb  33715
  Copyright terms: Public domain W3C validator