| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑠𝜑 |
| 2 | | nfre1 3271 |
. . . . 5
⊢
Ⅎ𝑠∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠) |
| 3 | 1, 2 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑠(𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 4 | | hoidmvlelem5.l |
. . . 4
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 5 | | hoidmvlelem5.w |
. . . . . 6
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 6 | | hoidmvlelem5.f |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 7 | | hoidmvlelem5.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 8 | | ssfi 9192 |
. . . . . . . 8
⊢ ((𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ Fin) |
| 9 | 6, 7, 8 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 10 | | snfi 9062 |
. . . . . . . 8
⊢ {𝑍} ∈ Fin |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 12 | | unfi 9190 |
. . . . . . 7
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 13 | 9, 11, 12 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 14 | 5, 13 | eqeltrid 2839 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 𝑊 ∈ Fin) |
| 16 | | hoidmvlelem5.a |
. . . . 5
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
| 17 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 𝐴:𝑊⟶ℝ) |
| 18 | | hoidmvlelem5.b |
. . . . 5
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 𝐵:𝑊⟶ℝ) |
| 20 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 21 | 3, 4, 15, 17, 19, 20 | hoidmvval0 46583 |
. . 3
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (𝐴(𝐿‘𝑊)𝐵) = 0) |
| 22 | | nnex 12251 |
. . . . . 6
⊢ ℕ
∈ V |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
| 24 | | icossicc 13458 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 25 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 26 | | hoidmvlelem5.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 27 | 26 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 28 | | elmapi 8868 |
. . . . . . . . 9
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 30 | | hoidmvlelem5.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 31 | 30 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 32 | | elmapi 8868 |
. . . . . . . . 9
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 34 | 4, 25, 29, 33 | hoidmvcl 46578 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 35 | 24, 34 | sselid 3961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 36 | 35 | fmpttd 7110 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
| 37 | 23, 36 | sge0ge0 46380 |
. . . 4
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 38 | 37 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 39 | 21, 38 | eqbrtrd 5146 |
. 2
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 40 | | icossxr 13454 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ* |
| 41 | 4, 14, 16, 18 | hoidmvcl 46578 |
. . . . . . 7
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ (0[,)+∞)) |
| 42 | 40, 41 | sselid 3961 |
. . . . . 6
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈
ℝ*) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ∈
ℝ*) |
| 44 | 23, 36 | sge0xrcl 46381 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 45 | 44 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 46 | | rge0ssre 13478 |
. . . . . . . . 9
⊢
(0[,)+∞) ⊆ ℝ |
| 47 | 46, 41 | sselid 3961 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ ℝ) |
| 48 | | ltpnf 13141 |
. . . . . . . 8
⊢ ((𝐴(𝐿‘𝑊)𝐵) ∈ ℝ → (𝐴(𝐿‘𝑊)𝐵) < +∞) |
| 49 | 47, 48 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) < +∞) |
| 50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) < +∞) |
| 51 | | id 22 |
. . . . . . . 8
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) |
| 52 | 51 | eqcomd 2742 |
. . . . . . 7
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞ → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 53 | 52 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 54 | 50, 53 | breqtrd 5150 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) <
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 55 | 43, 45, 54 | xrltled 13171 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 56 | 55 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 57 | | simpll 766 |
. . . 4
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → 𝜑) |
| 58 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 59 | 16 | ffvelcdmda 7079 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑊) → (𝐴‘𝑠) ∈ ℝ) |
| 60 | 18 | ffvelcdmda 7079 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑊) → (𝐵‘𝑠) ∈ ℝ) |
| 61 | 59, 60 | ltnled 11387 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑊) → ((𝐴‘𝑠) < (𝐵‘𝑠) ↔ ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 62 | 61 | ralbidva 3162 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ∀𝑠 ∈ 𝑊 ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 63 | | ralnex 3063 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝑊 ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 64 | 63 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ 𝑊 ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 65 | 62, 64 | bitrd 279 |
. . . . . . 7
⊢ (𝜑 → (∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 66 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 67 | 58, 66 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) |
| 68 | 67 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) |
| 69 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) |
| 70 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → ℕ ∈
V) |
| 71 | 36 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
| 72 | 70, 71 | sge0repnf 46382 |
. . . . . 6
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞)) |
| 73 | 69, 72 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 74 | 73 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 75 | | simpll 766 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠))) |
| 76 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
| 77 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
| 78 | 76, 77 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) = ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖))) |
| 79 | 78 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) = (𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖))) |
| 80 | 79 | fveq2i 6884 |
. . . . . . . . . 10
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) =
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) |
| 81 | 80 | eleq1i 2826 |
. . . . . . . . 9
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ ↔
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 82 | 81 | biimpi 216 |
. . . . . . . 8
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 83 | 82 | ad2antlr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 84 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
| 85 | 6 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑋 ∈ Fin) |
| 86 | 7 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑌 ⊆ 𝑋) |
| 87 | | hoidmvlelem5.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ≠ ∅) |
| 88 | 87 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑌 ≠ ∅) |
| 89 | | hoidmvlelem5.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 90 | 89 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 91 | 16 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐴:𝑊⟶ℝ) |
| 92 | 18 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐵:𝑊⟶ℝ) |
| 93 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑘 → (𝐴‘𝑠) = (𝐴‘𝑘)) |
| 94 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑘 → (𝐵‘𝑠) = (𝐵‘𝑘)) |
| 95 | 93, 94 | breq12d 5137 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑘 → ((𝐴‘𝑠) < (𝐵‘𝑠) ↔ (𝐴‘𝑘) < (𝐵‘𝑘))) |
| 96 | 95 | cbvralvw 3224 |
. . . . . . . . . . . 12
⊢
(∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ∀𝑘 ∈ 𝑊 (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 97 | 96 | biimpi 216 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) → ∀𝑘 ∈ 𝑊 (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 98 | 97 | adantr 480 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ∧ 𝑘 ∈ 𝑊) → ∀𝑘 ∈ 𝑊 (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 99 | | simpr 484 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑊) |
| 100 | | rspa 3235 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑊 (𝐴‘𝑘) < (𝐵‘𝑘) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 101 | 98, 99, 100 | syl2anc 584 |
. . . . . . . . 9
⊢
((∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 102 | 101 | ad5ant25 761 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 103 | 26 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐶:ℕ⟶(ℝ
↑m 𝑊)) |
| 104 | 30 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐷:ℕ⟶(ℝ
↑m 𝑊)) |
| 105 | 81 | biimpri 228 |
. . . . . . . . 9
⊢
((Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 106 | 105 | ad2antlr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 107 | | fveq1 6880 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → (𝑑‘𝑖) = (𝑐‘𝑖)) |
| 108 | 107 | breq1d 5134 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑐 → ((𝑑‘𝑖) ≤ 𝑥 ↔ (𝑐‘𝑖) ≤ 𝑥)) |
| 109 | 108, 107 | ifbieq1d 4530 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥) = if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)) |
| 110 | 107, 109 | ifeq12d 4527 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)) = if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) |
| 111 | 110 | mpteq2dv 5220 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))) = (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)))) |
| 112 | | eleq1w 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝑌 ↔ 𝑗 ∈ 𝑌)) |
| 113 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑐‘𝑖) = (𝑐‘𝑗)) |
| 114 | 113 | breq1d 5134 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝑐‘𝑖) ≤ 𝑥 ↔ (𝑐‘𝑗) ≤ 𝑥)) |
| 115 | 114, 113 | ifbieq1d 4530 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥) = if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) |
| 116 | 112, 113,
115 | ifbieq12d 4534 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)) = if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) |
| 117 | 116 | cbvmptv 5230 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) = (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) |
| 118 | 117 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) = (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) |
| 119 | 111, 118 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑐 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))) = (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) |
| 120 | 119 | cbvmptv 5230 |
. . . . . . . . 9
⊢ (𝑑 ∈ (ℝ
↑m 𝑊)
↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) |
| 121 | 120 | mpteq2i 5222 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ
↑m 𝑊)
↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 122 | | eqid 2736 |
. . . . . . . 8
⊢ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
| 123 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
| 124 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑤 − (𝐴‘𝑍)) = (𝑧 − (𝐴‘𝑍))) |
| 125 | 124 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) = (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑧 − (𝐴‘𝑍)))) |
| 126 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → ((𝑑‘𝑖) ≤ 𝑤 ↔ (𝑑‘𝑖) ≤ 𝑥)) |
| 127 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 128 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) |
| 129 | 126, 127,
128 | ifbieq12d 4534 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤) = if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)) |
| 130 | 129 | ifeq2d 4526 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑥 → if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)) = if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))) |
| 131 | 130 | mpteq2dv 5220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤))) = (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))) |
| 132 | 131 | mpteq2dv 5220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))) = (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))))) |
| 133 | 132 | cbvmptv 5230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ
↑m 𝑊)
↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤))))) = (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))))) |
| 134 | 133 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤))))) = (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))) |
| 135 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
| 136 | 134, 135 | fveq12d 6888 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤) = ((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)) |
| 137 | 136 | fveq1d 6883 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → (((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)) = (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙))) |
| 138 | 137 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))) = ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)))) |
| 139 | 138 | mpteq2dv 5220 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))) = (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙))))) |
| 140 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑗 → (𝐶‘𝑙) = (𝐶‘𝑗)) |
| 141 | | 2fveq3 6886 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑗 → (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)) = (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))) |
| 142 | 140, 141 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑗 → ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙))) = ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))) |
| 143 | 142 | cbvmptv 5230 |
. . . . . . . . . . . . . 14
⊢ (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))) |
| 144 | 143 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))) |
| 145 | 139, 144 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))) |
| 146 | 145 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 →
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))))) |
| 147 | 146 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))))) = ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))))) |
| 148 | 125, 147 | breq12d 5137 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → ((((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))))) ↔ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))))))) |
| 149 | 148 | cbvrabv 3431 |
. . . . . . . 8
⊢ {𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))))} = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))))} |
| 150 | | eqid 2736 |
. . . . . . . 8
⊢
sup({𝑤 ∈
((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))))}, ℝ, < ) = sup({𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑m 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))))}, ℝ, < ) |
| 151 | | hoidmvlelem5.i |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 152 | 151 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) →
∀𝑒 ∈ (ℝ
↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 153 | | hoidmvlelem5.s |
. . . . . . . . 9
⊢ (𝜑 → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 154 | 153 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 155 | 4, 85, 86, 88, 90, 5, 91, 92, 102, 103, 104, 106, 121, 122, 123, 149, 150, 152, 154 | hoidmvlelem4 46594 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 156 | 75, 83, 84, 155 | syl21anc 837 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 157 | 156 | ralrimiva 3133 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → ∀𝑟 ∈ ℝ+
(𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 158 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑟((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 159 | 42 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → (𝐴(𝐿‘𝑊)𝐵) ∈
ℝ*) |
| 160 | | 0xr 11287 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 161 | 160 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → 0 ∈
ℝ*) |
| 162 | | pnfxr 11294 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 163 | 162 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → +∞ ∈
ℝ*) |
| 164 | 44 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 165 | 37 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 166 | | ltpnf 13141 |
. . . . . . . 8
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 167 | 166 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 168 | 161, 163,
164, 165, 167 | elicod 13417 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ (0[,)+∞)) |
| 169 | 158, 159,
168 | xralrple2 45348 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → ((𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ↔ ∀𝑟 ∈ ℝ+ (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))))) |
| 170 | 157, 169 | mpbird 257 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 171 | 57, 68, 74, 170 | syl21anc 837 |
. . 3
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 172 | 56, 171 | pm2.61dan 812 |
. 2
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 173 | 39, 172 | pm2.61dan 812 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |