Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad5ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad5ant24 | ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantll 711 | . 2 ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
3 | 2 | ad4ant13 748 | 1 ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: omlimcl 8409 cofsmo 10025 leexp1a 13893 natpropd 17694 isucn2 23431 metust 23714 hpgerlem 27126 clwlkclwwlklem2a4 28361 cyc3genpm 31419 nsgqusf1olem1 31598 ist0cld 31783 matunitlindflem1 35773 rexabslelem 42958 |
Copyright terms: Public domain | W3C validator |