MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant24 Structured version   Visualization version   GIF version

Theorem ad5ant24 760
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant24 (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant24
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantll 713 . 2 (((𝜃𝜑) ∧ 𝜓) → 𝜒)
32ad4ant13 750 1 (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  omlimcl  8634  cofsmo  10338  leexp1a  14225  natpropd  18046  mhpmulcl  22176  isucn2  24309  metust  24592  hpgerlem  28791  clwlkclwwlklem2a4  30029  cyc3genpm  33145  nsgqusf1olem1  33406  1arithufdlem2  33538  ist0cld  33779  matunitlindflem1  37576  rexabslelem  45333
  Copyright terms: Public domain W3C validator