MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant24 Structured version   Visualization version   GIF version

Theorem ad5ant24 760
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant24 (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant24
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantll 714 . 2 (((𝜃𝜑) ∧ 𝜓) → 𝜒)
32ad4ant13 751 1 (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  omlimcl  8488  cofsmo  10155  leexp1a  14077  natpropd  17881  mhpmulcl  22059  isucn2  24188  metust  24468  hpgerlem  28738  clwlkclwwlklem2a4  29969  cyc3genpm  33113  nsgqusf1olem1  33370  1arithufdlem2  33502  ist0cld  33838  matunitlindflem1  37656  rexabslelem  45456
  Copyright terms: Public domain W3C validator