MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatacl Structured version   Visualization version   GIF version

Theorem cpmatacl 21865
Description: The set of all constant polynomial matrices over a ring 𝑅 is closed under addition. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatacl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥)

Proof of Theorem cpmatacl
Dummy variables 𝑖 𝑗 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2738 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2738 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
71, 2, 3, 4, 5, 6cpmatelimp2 21863 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))))
81, 2, 3, 4, 5, 6cpmatelimp2 21863 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏))))
9 r19.26-2 3096 . . . . . . . . . . . . . 14 (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) ↔ (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)))
10 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g𝑅) = (+g𝑅)
115, 10ringacl 19817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
12113expb 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
132ply1sca 21424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
1413eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
1514fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → (+g‘(Scalar‘𝑃)) = (+g𝑅))
1615oveqd 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑅 ∈ Ring → (𝑎(+g‘(Scalar‘𝑃))𝑏) = (𝑎(+g𝑅)𝑏))
1716eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1817adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1912, 18mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2019ad5ant25 759 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2120adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
22 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((algSc‘𝑃)‘𝑐) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
2322eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
2423adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) ∧ 𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏)) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
25 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
2625ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
2726anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
2827ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
29 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝐶) = (+g𝐶)
30 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝑃) = (+g𝑃)
313, 4, 29, 30matplusgcell 21582 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
3228, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
33 oveq12 7284 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ (𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
3433ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
35 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Scalar‘𝑃) = (Scalar‘𝑃)
362ply1ring 21419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
3736ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ Ring)
382ply1lmod 21423 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ LMod)
406, 35, 37, 39asclghm 21087 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
4113adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
4241fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4342eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4443biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4544ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4645adantrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4746imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4813ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 = (Scalar‘𝑃))
4948fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
5049eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) ↔ 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5150biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5251adantld 491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5352imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘(Scalar‘𝑃)))
54 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
55 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘𝑃))
5654, 55, 30ghmlin 18839 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5740, 47, 53, 56syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5857eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
5934, 58sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6032, 59eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6121, 24, 60rspcedvd 3563 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
6261exp32 421 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6362anassrs 468 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6463rexlimdva 3213 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6564com23 86 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6665rexlimdva 3213 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6766impd 411 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
6867ralimdvva 3126 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
699, 68syl5bir 242 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → ((∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
7069expd 416 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7170expr 457 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7271impd 411 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7372ex 413 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7473com34 91 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7574impd 411 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
768, 75syld 47 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7776com23 86 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
787, 77syld 47 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7978imp32 419 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
80 simpl 483 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
8180adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑁 ∈ Fin)
82 simpr 485 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
8382adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑅 ∈ Ring)
842, 3pmatring 21841 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8584adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐶 ∈ Ring)
86 simpl 483 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
8786anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
88 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
8987, 88sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆))
901, 2, 3, 4cpmatpmat 21859 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
9189, 90syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐶))
92 simpr 485 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
9392anim2i 617 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
94 df-3an 1088 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
9593, 94sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆))
961, 2, 3, 4cpmatpmat 21859 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐶))
9795, 96syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐶))
984, 29ringacl 19817 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
9985, 91, 97, 98syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
1001, 2, 3, 4, 5, 6cpmatel2 21862 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10181, 83, 99, 100syl3anc 1370 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10279, 101mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ 𝑆)
103102ralrimivva 3123 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   GrpHom cghm 18831  Ringcrg 19783  LModclmod 20123  algSccascl 21059  Poly1cpl1 21348   Mat cmat 21554   ConstPolyMat ccpmat 21852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mamu 21533  df-mat 21555  df-cpmat 21855
This theorem is referenced by:  cpmatsubgpmat  21869
  Copyright terms: Public domain W3C validator