MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatacl Structured version   Visualization version   GIF version

Theorem cpmatacl 21773
Description: The set of all constant polynomial matrices over a ring 𝑅 is closed under addition. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatacl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥)

Proof of Theorem cpmatacl
Dummy variables 𝑖 𝑗 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2738 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2738 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
71, 2, 3, 4, 5, 6cpmatelimp2 21771 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))))
81, 2, 3, 4, 5, 6cpmatelimp2 21771 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏))))
9 r19.26-2 3095 . . . . . . . . . . . . . 14 (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) ↔ (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)))
10 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g𝑅) = (+g𝑅)
115, 10ringacl 19732 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
12113expb 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
132ply1sca 21334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
1413eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
1514fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → (+g‘(Scalar‘𝑃)) = (+g𝑅))
1615oveqd 7272 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑅 ∈ Ring → (𝑎(+g‘(Scalar‘𝑃))𝑏) = (𝑎(+g𝑅)𝑏))
1716eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1817adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1912, 18mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2019ad5ant25 758 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2120adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
22 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((algSc‘𝑃)‘𝑐) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
2322eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) ∧ 𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏)) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
25 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
2625ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
2726anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
2827ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
29 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝐶) = (+g𝐶)
30 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝑃) = (+g𝑃)
313, 4, 29, 30matplusgcell 21490 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
3228, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
33 oveq12 7264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ (𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
3433ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
35 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Scalar‘𝑃) = (Scalar‘𝑃)
362ply1ring 21329 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
3736ad4antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ Ring)
382ply1lmod 21333 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad4antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ LMod)
406, 35, 37, 39asclghm 20997 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
4113adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
4241fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4342eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4443biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4544ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4645adantrd 491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4746imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4813ad3antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 = (Scalar‘𝑃))
4948fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
5049eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) ↔ 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5150biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5251adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5352imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘(Scalar‘𝑃)))
54 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
55 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘𝑃))
5654, 55, 30ghmlin 18754 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5740, 47, 53, 56syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5857eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
5934, 58sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6032, 59eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6121, 24, 60rspcedvd 3555 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
6261exp32 420 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6362anassrs 467 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6463rexlimdva 3212 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6564com23 86 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6665rexlimdva 3212 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6766impd 410 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
6867ralimdvva 3104 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
699, 68syl5bir 242 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → ((∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
7069expd 415 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7170expr 456 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7271impd 410 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7372ex 412 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7473com34 91 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7574impd 410 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
768, 75syld 47 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7776com23 86 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
787, 77syld 47 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7978imp32 418 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
80 simpl 482 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
8180adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑁 ∈ Fin)
82 simpr 484 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
8382adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑅 ∈ Ring)
842, 3pmatring 21749 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8584adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐶 ∈ Ring)
86 simpl 482 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
8786anim2i 616 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
88 df-3an 1087 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
8987, 88sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆))
901, 2, 3, 4cpmatpmat 21767 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
9189, 90syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐶))
92 simpr 484 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
9392anim2i 616 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
94 df-3an 1087 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
9593, 94sylibr 233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆))
961, 2, 3, 4cpmatpmat 21767 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐶))
9795, 96syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐶))
984, 29ringacl 19732 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
9985, 91, 97, 98syl3anc 1369 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
1001, 2, 3, 4, 5, 6cpmatel2 21770 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10181, 83, 99, 100syl3anc 1369 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10279, 101mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ 𝑆)
103102ralrimivva 3114 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   GrpHom cghm 18746  Ringcrg 19698  LModclmod 20038  algSccascl 20969  Poly1cpl1 21258   Mat cmat 21464   ConstPolyMat ccpmat 21760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mamu 21443  df-mat 21465  df-cpmat 21763
This theorem is referenced by:  cpmatsubgpmat  21777
  Copyright terms: Public domain W3C validator