MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatacl Structured version   Visualization version   GIF version

Theorem cpmatacl 21567
Description: The set of all constant polynomial matrices over a ring 𝑅 is closed under addition. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatacl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥)

Proof of Theorem cpmatacl
Dummy variables 𝑖 𝑗 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2736 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
71, 2, 3, 4, 5, 6cpmatelimp2 21565 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))))
81, 2, 3, 4, 5, 6cpmatelimp2 21565 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏))))
9 r19.26-2 3083 . . . . . . . . . . . . . 14 (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) ↔ (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)))
10 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g𝑅) = (+g𝑅)
115, 10ringacl 19550 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
12113expb 1122 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
132ply1sca 21128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
1413eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
1514fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → (+g‘(Scalar‘𝑃)) = (+g𝑅))
1615oveqd 7208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑅 ∈ Ring → (𝑎(+g‘(Scalar‘𝑃))𝑏) = (𝑎(+g𝑅)𝑏))
1716eleq1d 2815 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1817adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1912, 18mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2019ad5ant25 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2120adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
22 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((algSc‘𝑃)‘𝑐) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
2322eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
2423adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) ∧ 𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏)) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
25 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
2625ancomd 465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
2726anim1i 618 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
2827ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
29 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝐶) = (+g𝐶)
30 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝑃) = (+g𝑃)
313, 4, 29, 30matplusgcell 21284 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
3228, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
33 oveq12 7200 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ (𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
3433ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
35 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Scalar‘𝑃) = (Scalar‘𝑃)
362ply1ring 21123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
3736ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ Ring)
382ply1lmod 21127 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ LMod)
406, 35, 37, 39asclghm 20796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
4113adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
4241fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4342eleq2d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4443biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4544ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4645adantrd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4746imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4813ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 = (Scalar‘𝑃))
4948fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
5049eleq2d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) ↔ 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5150biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5251adantld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5352imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘(Scalar‘𝑃)))
54 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
55 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘𝑃))
5654, 55, 30ghmlin 18581 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5740, 47, 53, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5857eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
5934, 58sylan9eqr 2793 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6032, 59eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6121, 24, 60rspcedvd 3530 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
6261exp32 424 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6362anassrs 471 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6463rexlimdva 3193 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6564com23 86 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6665rexlimdva 3193 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6766impd 414 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
6867ralimdvva 3092 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
699, 68syl5bir 246 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → ((∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
7069expd 419 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7170expr 460 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7271impd 414 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7372ex 416 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7473com34 91 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7574impd 414 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
768, 75syld 47 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7776com23 86 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
787, 77syld 47 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7978imp32 422 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
80 simpl 486 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
8180adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑁 ∈ Fin)
82 simpr 488 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
8382adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑅 ∈ Ring)
842, 3pmatring 21543 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8584adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐶 ∈ Ring)
86 simpl 486 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
8786anim2i 620 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
88 df-3an 1091 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
8987, 88sylibr 237 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆))
901, 2, 3, 4cpmatpmat 21561 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
9189, 90syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐶))
92 simpr 488 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
9392anim2i 620 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
94 df-3an 1091 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
9593, 94sylibr 237 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆))
961, 2, 3, 4cpmatpmat 21561 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐶))
9795, 96syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐶))
984, 29ringacl 19550 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
9985, 91, 97, 98syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
1001, 2, 3, 4, 5, 6cpmatel2 21564 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10181, 83, 99, 100syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10279, 101mpbird 260 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ 𝑆)
103102ralrimivva 3102 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052  cfv 6358  (class class class)co 7191  Fincfn 8604  Basecbs 16666  +gcplusg 16749  Scalarcsca 16752   GrpHom cghm 18573  Ringcrg 19516  LModclmod 19853  algSccascl 20768  Poly1cpl1 21052   Mat cmat 21258   ConstPolyMat ccpmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-ofr 7448  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-fzo 13204  df-seq 13540  df-hash 13862  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-0g 16900  df-gsum 16901  df-prds 16906  df-pws 16908  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-ghm 18574  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-srg 19475  df-ring 19518  df-subrg 19752  df-lmod 19855  df-lss 19923  df-sra 20163  df-rgmod 20164  df-dsmm 20648  df-frlm 20663  df-ascl 20771  df-psr 20822  df-mvr 20823  df-mpl 20824  df-opsr 20826  df-psr1 21055  df-vr1 21056  df-ply1 21057  df-coe1 21058  df-mamu 21237  df-mat 21259  df-cpmat 21557
This theorem is referenced by:  cpmatsubgpmat  21571
  Copyright terms: Public domain W3C validator