MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatacl Structured version   Visualization version   GIF version

Theorem cpmatacl 21022
Description: The set of all constant polynomial matrices over a ring 𝑅 is closed under addition. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatacl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥)

Proof of Theorem cpmatacl
Dummy variables 𝑖 𝑗 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2772 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2772 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2772 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
71, 2, 3, 4, 5, 6cpmatelimp2 21020 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))))
81, 2, 3, 4, 5, 6cpmatelimp2 21020 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏))))
9 r19.26-2 3115 . . . . . . . . . . . . . 14 (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) ↔ (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)))
10 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g𝑅) = (+g𝑅)
115, 10ringacl 19045 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
12113expb 1100 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅))
132ply1sca 20118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
1413eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
1514fveq2d 6497 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → (+g‘(Scalar‘𝑃)) = (+g𝑅))
1615oveqd 6987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑅 ∈ Ring → (𝑎(+g‘(Scalar‘𝑃))𝑏) = (𝑎(+g𝑅)𝑏))
1716eleq1d 2844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1817adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g𝑅)𝑏) ∈ (Base‘𝑅)))
1912, 18mpbird 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2019ad5ant25 749 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
2120adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅))
22 fveq2 6493 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((algSc‘𝑃)‘𝑐) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
2322eqeq2d 2782 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
2423adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) ∧ 𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏)) → ((𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))))
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
2625ancomd 454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)))
2726anim1i 605 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
2827ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)))
29 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝐶) = (+g𝐶)
30 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (+g𝑃) = (+g𝑃)
313, 4, 29, 30matplusgcell 20740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
3228, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)))
33 oveq12 6979 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ (𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
3433ancoms 451 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
35 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Scalar‘𝑃) = (Scalar‘𝑃)
362ply1ring 20113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
3736ad4antlr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ Ring)
382ply1lmod 20117 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3938ad4antlr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ LMod)
406, 35, 37, 39asclghm 19826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
4113adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
4241fveq2d 6497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4342eleq2d 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4443biimpd 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4544ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4645adantrd 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4746imp 398 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4813ad3antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 = (Scalar‘𝑃))
4948fveq2d 6497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
5049eleq2d 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) ↔ 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5150biimpd 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑏 ∈ (Base‘𝑅) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5251adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏 ∈ (Base‘(Scalar‘𝑃))))
5352imp 398 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘(Scalar‘𝑃)))
54 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
55 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘𝑃))
5654, 55, 30ghmlin 18128 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5740, 47, 53, 56syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)))
5857eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘𝑎)(+g𝑃)((algSc‘𝑃)‘𝑏)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
5934, 58sylan9eqr 2830 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑖𝑥𝑗)(+g𝑃)(𝑖𝑦𝑗)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6032, 59eqtrd 2808 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))
6121, 24, 60rspcedvd 3536 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
6261exp32 413 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6362anassrs 460 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6463rexlimdva 3223 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6564com23 86 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6665rexlimdva 3223 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
6766impd 402 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
6867ralimdvva 3123 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
699, 68syl5bir 235 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → ((∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
7069expd 408 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7170expr 449 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7271impd 402 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7372ex 405 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7473com34 91 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))))
7574impd 402 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
768, 75syld 47 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7776com23 86 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
787, 77syld 47 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))
7978imp32 411 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))
80 simpl 475 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
8180adantr 473 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑁 ∈ Fin)
82 simpr 477 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
8382adantr 473 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑅 ∈ Ring)
842, 3pmatring 20999 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8584adantr 473 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝐶 ∈ Ring)
86 simpl 475 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
8786anim2i 607 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
88 df-3an 1070 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆))
8987, 88sylibr 226 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆))
901, 2, 3, 4cpmatpmat 21016 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
9189, 90syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐶))
92 simpr 477 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
9392anim2i 607 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
94 df-3an 1070 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝑆))
9593, 94sylibr 226 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆))
961, 2, 3, 4cpmatpmat 21016 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐶))
9795, 96syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐶))
984, 29ringacl 19045 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
9985, 91, 97, 98syl3anc 1351 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶))
1001, 2, 3, 4, 5, 6cpmatel2 21019 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐶)𝑦) ∈ (Base‘𝐶)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10181, 83, 99, 100syl3anc 1351 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥(+g𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))
10279, 101mpbird 249 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐶)𝑦) ∈ 𝑆)
103102ralrimivva 3135 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3082  wrex 3083  cfv 6182  (class class class)co 6970  Fincfn 8300  Basecbs 16333  +gcplusg 16415  Scalarcsca 16418   GrpHom cghm 18120  Ringcrg 19014  LModclmod 19350  algSccascl 19799  Poly1cpl1 20042   Mat cmat 20714   ConstPolyMat ccpmat 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-ofr 7222  df-om 7391  df-1st 7495  df-2nd 7496  df-supp 7628  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-oadd 7903  df-er 8083  df-map 8202  df-pm 8203  df-ixp 8254  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-fsupp 8623  df-sup 8695  df-oi 8763  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-fz 12703  df-fzo 12844  df-seq 13179  df-hash 13500  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-sca 16431  df-vsca 16432  df-ip 16433  df-tset 16434  df-ple 16435  df-ds 16437  df-hom 16439  df-cco 16440  df-0g 16565  df-gsum 16566  df-prds 16571  df-pws 16573  df-mre 16709  df-mrc 16710  df-acs 16712  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-mhm 17797  df-submnd 17798  df-grp 17888  df-minusg 17889  df-sbg 17890  df-mulg 18006  df-subg 18054  df-ghm 18121  df-cntz 18212  df-cmn 18662  df-abl 18663  df-mgp 18957  df-ur 18969  df-srg 18973  df-ring 19016  df-subrg 19250  df-lmod 19352  df-lss 19420  df-sra 19660  df-rgmod 19661  df-ascl 19802  df-psr 19844  df-mvr 19845  df-mpl 19846  df-opsr 19848  df-psr1 20045  df-vr1 20046  df-ply1 20047  df-coe1 20048  df-dsmm 20572  df-frlm 20587  df-mamu 20691  df-mat 20715  df-cpmat 21012
This theorem is referenced by:  cpmatsubgpmat  21026
  Copyright terms: Public domain W3C validator