Step | Hyp | Ref
| Expression |
1 | | cpmatsrngpmat.s |
. . . . . 6
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
2 | | cpmatsrngpmat.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | cpmatsrngpmat.c |
. . . . . 6
⊢ 𝐶 = (𝑁 Mat 𝑃) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | | eqid 2738 |
. . . . . 6
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
7 | 1, 2, 3, 4, 5, 6 | cpmatelimp2 21771 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)))) |
8 | 1, 2, 3, 4, 5, 6 | cpmatelimp2 21771 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)))) |
9 | | r19.26-2 3095 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) ↔ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏))) |
10 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(+g‘𝑅) = (+g‘𝑅) |
11 | 5, 10 | ringacl 19732 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝑎(+g‘𝑅)𝑏) ∈ (Base‘𝑅)) |
12 | 11 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘𝑅)𝑏) ∈ (Base‘𝑅)) |
13 | 2 | ply1sca 21334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
14 | 13 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
15 | 14 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑅 ∈ Ring →
(+g‘(Scalar‘𝑃)) = (+g‘𝑅)) |
16 | 15 | oveqd 7272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑅 ∈ Ring → (𝑎(+g‘(Scalar‘𝑃))𝑏) = (𝑎(+g‘𝑅)𝑏)) |
17 | 16 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑅 ∈ Ring → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g‘𝑅)𝑏) ∈ (Base‘𝑅))) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅) ↔ (𝑎(+g‘𝑅)𝑏) ∈ (Base‘𝑅))) |
19 | 12, 18 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅)) |
20 | 19 | ad5ant25 758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅)) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑎(+g‘(Scalar‘𝑃))𝑏) ∈ (Base‘𝑅)) |
22 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((algSc‘𝑃)‘𝑐) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏) → ((𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))) |
24 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) ∧ 𝑐 = (𝑎(+g‘(Scalar‘𝑃))𝑏)) → ((𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)))) |
25 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) |
26 | 25 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) |
27 | 26 | anim1i 614 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
28 | 27 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
29 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(+g‘𝐶) = (+g‘𝐶) |
30 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(+g‘𝑃) = (+g‘𝑃) |
31 | 3, 4, 29, 30 | matplusgcell 21490 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘𝑃)(𝑖𝑦𝑗))) |
32 | 28, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘𝑃)(𝑖𝑦𝑗))) |
33 | | oveq12 7264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ (𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑖𝑥𝑗)(+g‘𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g‘𝑃)((algSc‘𝑃)‘𝑏))) |
34 | 33 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((𝑖𝑥𝑗)(+g‘𝑃)(𝑖𝑦𝑗)) = (((algSc‘𝑃)‘𝑎)(+g‘𝑃)((algSc‘𝑃)‘𝑏))) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
36 | 2 | ply1ring 21329 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
37 | 36 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ Ring) |
38 | 2 | ply1lmod 21333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
39 | 38 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑃 ∈ LMod) |
40 | 6, 35, 37, 39 | asclghm 20997 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃)) |
41 | 13 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃)) |
42 | 41 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
43 | 42 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃)))) |
44 | 43 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))) |
45 | 44 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))) |
46 | 45 | adantrd 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))) |
47 | 46 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑃))) |
48 | 13 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 = (Scalar‘𝑃)) |
49 | 48 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
50 | 49 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑏 ∈ (Base‘𝑅) ↔ 𝑏 ∈ (Base‘(Scalar‘𝑃)))) |
51 | 50 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑏 ∈ (Base‘𝑅) → 𝑏 ∈ (Base‘(Scalar‘𝑃)))) |
52 | 51 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏 ∈ (Base‘(Scalar‘𝑃)))) |
53 | 52 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘(Scalar‘𝑃))) |
54 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
55 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(+g‘(Scalar‘𝑃)) =
(+g‘(Scalar‘𝑃)) |
56 | 54, 55, 30 | ghmlin 18754 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((algSc‘𝑃)
∈ ((Scalar‘𝑃)
GrpHom 𝑃) ∧ 𝑎 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g‘𝑃)((algSc‘𝑃)‘𝑏))) |
57 | 40, 47, 53, 56 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏)) = (((algSc‘𝑃)‘𝑎)(+g‘𝑃)((algSc‘𝑃)‘𝑏))) |
58 | 57 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘𝑎)(+g‘𝑃)((algSc‘𝑃)‘𝑏)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))) |
59 | 34, 58 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ((𝑖𝑥𝑗)(+g‘𝑃)(𝑖𝑦𝑗)) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))) |
60 | 32, 59 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → (𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘(𝑎(+g‘(Scalar‘𝑃))𝑏))) |
61 | 21, 24, 60 | rspcedvd 3555 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) ∧ ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)) |
62 | 61 | exp32 420 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
63 | 62 | anassrs 467 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏 ∈ (Base‘𝑅)) → ((𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
64 | 63 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
65 | 64 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
66 | 65 | rexlimdva 3212 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
67 | 66 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))) |
68 | 67 | ralimdvva 3104 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))) |
69 | 9, 68 | syl5bir 242 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → ((∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))) |
70 | 69 | expd 415 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
71 | 70 | expr 456 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))) |
72 | 71 | impd 410 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
73 | 72 | ex 412 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))) |
74 | 73 | com34 91 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ (Base‘𝐶) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))))) |
75 | 74 | impd 410 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑏 ∈ (Base‘𝑅)(𝑖𝑦𝑗) = ((algSc‘𝑃)‘𝑏)) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
76 | 8, 75 | syld 47 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
77 | 76 | com23 86 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
78 | 7, 77 | syld 47 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)))) |
79 | 78 | imp32 418 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐)) |
80 | | simpl 482 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
81 | 80 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑁 ∈ Fin) |
82 | | simpr 484 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
83 | 82 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑅 ∈ Ring) |
84 | 2, 3 | pmatring 21749 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
85 | 84 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐶 ∈ Ring) |
86 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
87 | 86 | anim2i 616 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ 𝑆)) |
88 | | df-3an 1087 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ 𝑆)) |
89 | 87, 88 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑆)) |
90 | 1, 2, 3, 4 | cpmatpmat 21767 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐶)) |
91 | 89, 90 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (Base‘𝐶)) |
92 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
93 | 92 | anim2i 616 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝑆)) |
94 | | df-3an 1087 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑆) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝑆)) |
95 | 93, 94 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑆)) |
96 | 1, 2, 3, 4 | cpmatpmat 21767 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (Base‘𝐶)) |
97 | 95, 96 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ (Base‘𝐶)) |
98 | 4, 29 | ringacl 19732 |
. . . . 5
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(+g‘𝐶)𝑦) ∈ (Base‘𝐶)) |
99 | 85, 91, 97, 98 | syl3anc 1369 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐶)𝑦) ∈ (Base‘𝐶)) |
100 | 1, 2, 3, 4, 5, 6 | cpmatel2 21770 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g‘𝐶)𝑦) ∈ (Base‘𝐶)) → ((𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))) |
101 | 81, 83, 99, 100 | syl3anc 1369 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∃𝑐 ∈ (Base‘𝑅)(𝑖(𝑥(+g‘𝐶)𝑦)𝑗) = ((algSc‘𝑃)‘𝑐))) |
102 | 79, 101 | mpbird 256 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐶)𝑦) ∈ 𝑆) |
103 | 102 | ralrimivva 3114 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆) |