Step | Hyp | Ref
| Expression |
1 | | dfrex2 3076 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 ↔ ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
2 | 1 | ralbii 3096 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 ↔ ∀𝑠 ∈ 𝑡 ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
3 | | ralnex 3075 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝑡 ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 ↔ ¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
4 | 2, 3 | bitr2i 275 |
. . . . . . . . 9
⊢ (¬
∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 ↔ ∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛) |
5 | | elin 3926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ↔ (𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin)) |
6 | | elpwi 4567 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) → 𝑛 ⊆ (𝑢 ∪ {𝑠})) |
7 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → 𝑛 ⊆ (𝑢 ∪ {𝑠})) |
8 | | uncom 4113 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∪ {𝑠}) = ({𝑠} ∪ 𝑢) |
9 | 7, 8 | sseqtrdi 3994 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → 𝑛 ⊆ ({𝑠} ∪ 𝑢)) |
10 | | ssundif 4445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ⊆ ({𝑠} ∪ 𝑢) ↔ (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
11 | 9, 10 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
12 | | diffi 9123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ Fin → (𝑛 ∖ {𝑠}) ∈ Fin) |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → (𝑛 ∖ {𝑠}) ∈ Fin) |
14 | 11, 13 | jca 512 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
15 | 5, 14 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
17 | 16 | ad2antll 727 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
18 | | elin 3926 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
19 | | vex 3449 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑢 ∈ V |
20 | 19 | elpw2 5302 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ↔ (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
21 | 20 | anbi1i 624 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin) ↔ ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
22 | 18, 21 | bitr2i 275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin) ↔ (𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin)) |
23 | 17, 22 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → (𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin)) |
24 | | simprrr 780 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 = ∪ 𝑛) |
25 | | eldif 3920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑛 ∖ {𝑠}) ↔ (𝑥 ∈ 𝑛 ∧ ¬ 𝑥 ∈ {𝑠})) |
26 | 25 | simplbi2 501 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑛 → (¬ 𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
27 | | elun 4108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) ↔ (𝑥 ∈ (𝑛 ∖ {𝑠}) ∨ 𝑥 ∈ {𝑠})) |
28 | | orcom 868 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ (𝑥 ∈ (𝑛 ∖ {𝑠}) ∨ 𝑥 ∈ {𝑠})) |
29 | 27, 28 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) ↔ (𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
30 | | df-or 846 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ (¬ 𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
31 | 29, 30 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ 𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
32 | 26, 31 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑛 → 𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
33 | 32 | ssriv 3948 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑛 ⊆ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) |
34 | | uniss 4873 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ⊆ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) → ∪ 𝑛 ⊆ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠})) |
35 | 33, 34 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑛
⊆ ∪ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
36 | | uniun 4891 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠}) = (∪ (𝑛
∖ {𝑠}) ∪ ∪ {𝑠}) |
37 | | unisnv 4888 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ {𝑠}
= 𝑠 |
38 | 37 | uneq2i 4120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ (𝑛
∖ {𝑠}) ∪ ∪ {𝑠})
= (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠) |
39 | 36, 38 | eqtri 2764 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠}) = (∪ (𝑛
∖ {𝑠}) ∪ 𝑠) |
40 | 35, 39 | sseqtrdi 3994 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑛
⊆ (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
41 | 24, 40 | eqsstrd 3982 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 ⊆ (∪
(𝑛 ∖ {𝑠}) ∪ 𝑠)) |
42 | | difss 4091 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∖ {𝑠}) ⊆ 𝑛 |
43 | 42 | unissi 4874 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ (𝑛
∖ {𝑠}) ⊆ ∪ 𝑛 |
44 | | sseq2 3970 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 = ∪
𝑛 → (∪ (𝑛
∖ {𝑠}) ⊆ 𝑋 ↔ ∪ (𝑛
∖ {𝑠}) ⊆ ∪ 𝑛)) |
45 | 43, 44 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
𝑛 → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
46 | 45 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
47 | 46 | ad2antll 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
48 | | elinel1 4155 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ 𝒫 𝑥) |
49 | 48 | elpwid 4569 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ⊆ 𝑥) |
50 | 49 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) → 𝑡 ⊆ 𝑥) |
51 | 50 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑡 ⊆ 𝑥) |
52 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑡) |
53 | 51, 52 | sseldd 3945 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑥) |
54 | | elssuni 4898 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝑥 → 𝑠 ⊆ ∪ 𝑥) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ⊆ ∪ 𝑥) |
56 | | fibas 22327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(fi‘𝑥) ∈
TopBases |
57 | | unitg 22317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((fi‘𝑥) ∈
TopBases → ∪ (topGen‘(fi‘𝑥)) = ∪ (fi‘𝑥)) |
58 | 56, 57 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥)) |
59 | | unieq 4876 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
60 | 59 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
61 | 60 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
62 | | vex 3449 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ∈ V |
63 | | fiuni 9364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ V → ∪ 𝑥 =
∪ (fi‘𝑥)) |
64 | 62, 63 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
∪ (fi‘𝑥)) |
65 | 58, 61, 64 | 3eqtr4rd 2787 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
∪ 𝐽) |
66 | | alexsubALT.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑋 = ∪
𝐽 |
67 | 65, 66 | eqtr4di 2794 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
𝑋) |
68 | 55, 67 | sseqtrd 3984 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ⊆ 𝑋) |
69 | 47, 68 | unssd 4146 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → (∪ (𝑛
∖ {𝑠}) ∪ 𝑠) ⊆ 𝑋) |
70 | 41, 69 | eqssd 3961 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
71 | | unieq 4876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑛 ∖ {𝑠}) → ∪ 𝑚 = ∪
(𝑛 ∖ {𝑠})) |
72 | 71 | uneq1d 4122 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑛 ∖ {𝑠}) → (∪ 𝑚 ∪ 𝑠) = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
73 | 72 | rspceeqv 3595 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) |
74 | 23, 70, 73 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) |
75 | 74 | expr 457 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
76 | 75 | expd 416 |
. . . . . . . . . . . 12
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) → (𝑋 = ∪ 𝑛 → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)))) |
77 | 76 | rexlimdv 3150 |
. . . . . . . . . . 11
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → (∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
78 | 77 | ralimdva 3164 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
79 | | elinel2 4156 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ Fin) |
80 | 79 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) → 𝑡 ∈ Fin) |
81 | | unieq 4876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑓‘𝑠) → ∪ 𝑚 = ∪
(𝑓‘𝑠)) |
82 | 81 | uneq1d 4122 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑓‘𝑠) → (∪ 𝑚 ∪ 𝑠) = (∪ (𝑓‘𝑠) ∪ 𝑠)) |
83 | 82 | eqeq2d 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑓‘𝑠) → (𝑋 = (∪ 𝑚 ∪ 𝑠) ↔ 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
84 | 83 | ac6sfi 9231 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ Fin ∧ ∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
85 | 84 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ Fin →
(∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
86 | 80, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
87 | 86 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
88 | 87 | ad2antrl 726 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
89 | | ffvelcdm 7032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin)) |
90 | | elin 3926 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((𝑓‘𝑠) ∈ 𝒫 𝑢 ∧ (𝑓‘𝑠) ∈ Fin)) |
91 | | elpwi 4567 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑠) ∈ 𝒫 𝑢 → (𝑓‘𝑠) ⊆ 𝑢) |
92 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓‘𝑠) ∈ 𝒫 𝑢 ∧ (𝑓‘𝑠) ∈ Fin) → (𝑓‘𝑠) ⊆ 𝑢) |
93 | 90, 92 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin) → (𝑓‘𝑠) ⊆ 𝑢) |
94 | 89, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ⊆ 𝑢) |
95 | 94 | ralrimiva 3143 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
96 | | iunss 5005 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢 ↔ ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
97 | 95, 96 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
98 | 97 | ad2antrl 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
99 | | simplrr 776 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ∈ 𝑢) |
100 | 99 | snssd 4769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → {𝑤} ⊆ 𝑢) |
101 | 98, 100 | unssd 4146 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢) |
102 | 89 | elin2d 4159 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ∈ Fin) |
103 | 102 | ralrimiva 3143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
104 | | iunfi 9284 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ Fin ∧ ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
105 | 80, 103, 104 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin)) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
106 | 105 | ad4ant14 750 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑡 ∈
(𝒫 𝑥 ∩ Fin)
∧ 𝑤 = ∩ 𝑡)
∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) ∧ 𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin)) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
107 | 106 | ad2ant2lr 746 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
108 | | snfi 8988 |
. . . . . . . . . . . . . . . 16
⊢ {𝑤} ∈ Fin |
109 | | unfi 9116 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin ∧ {𝑤} ∈ Fin) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) |
110 | 107, 108,
109 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) |
111 | 101, 110 | jca 512 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
112 | | elin 3926 |
. . . . . . . . . . . . . . 15
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
113 | 19 | elpw2 5302 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢) |
114 | 113 | anbi1i 624 |
. . . . . . . . . . . . . . 15
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) ↔ ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
115 | 112, 114 | bitr2i 275 |
. . . . . . . . . . . . . 14
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) ↔ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
116 | 111, 115 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
117 | | ralnex 3075 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑠 ∈
𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) |
118 | 117 | imbi2i 335 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ (𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
119 | 118 | albii 1821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ ∀𝑦(𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
120 | | alinexa 1845 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ↔ ¬ ∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
121 | 119, 120 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ↔ ∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠))) |
122 | | fveq2 6842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑠 = 𝑧 → (𝑓‘𝑠) = (𝑓‘𝑧)) |
123 | 122 | unieqd 4879 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑠 = 𝑧 → ∪ (𝑓‘𝑠) = ∪ (𝑓‘𝑧)) |
124 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑠 = 𝑧 → 𝑠 = 𝑧) |
125 | 123, 124 | uneq12d 4124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑠 = 𝑧 → (∪ (𝑓‘𝑠) ∪ 𝑠) = (∪ (𝑓‘𝑧) ∪ 𝑧)) |
126 | 125 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = 𝑧 → (𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) ↔ 𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧))) |
127 | 126 | rspcv 3577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → 𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧))) |
128 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑋 = (∪
(𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 ↔ 𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧))) |
129 | 128 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑋 = (∪
(𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 → 𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧))) |
130 | | elun 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) ↔ (𝑣 ∈ ∪ (𝑓‘𝑧) ∨ 𝑣 ∈ 𝑧)) |
131 | | eluni 4868 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 ∈ ∪ (𝑓‘𝑧) ↔ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧))) |
132 | 131 | orbi1i 912 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑣 ∈ ∪ (𝑓‘𝑧) ∨ 𝑣 ∈ 𝑧) ↔ (∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧)) |
133 | | df-or 846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧) ↔ (¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
134 | | alinexa 1845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) ↔ ¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧))) |
135 | 134 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧) ↔ (¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
136 | 133, 135 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧) ↔ (∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
137 | 130, 132,
136 | 3bitri 296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) ↔ (∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
138 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑤 → (𝑣 ∈ 𝑦 ↔ 𝑣 ∈ 𝑤)) |
139 | | eleq1w 2820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑓‘𝑠) ↔ 𝑤 ∈ (𝑓‘𝑠))) |
140 | 139 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑤 → (¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ¬ 𝑤 ∈ (𝑓‘𝑠))) |
141 | 140 | ralbidv 3174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑤 → (∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠))) |
142 | 138, 141 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑤 → ((𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ (𝑣 ∈ 𝑤 → ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠)))) |
143 | 142 | spvv 2000 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑤 → ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠))) |
144 | 122 | eleq2d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑠 = 𝑧 → (𝑤 ∈ (𝑓‘𝑠) ↔ 𝑤 ∈ (𝑓‘𝑧))) |
145 | 144 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑠 = 𝑧 → (¬ 𝑤 ∈ (𝑓‘𝑠) ↔ ¬ 𝑤 ∈ (𝑓‘𝑧))) |
146 | 145 | rspcv 3577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠) → ¬ 𝑤 ∈ (𝑓‘𝑧))) |
147 | 143, 146 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)))) |
148 | 147 | alrimdv 1932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → ∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)))) |
149 | 148 | imim1d 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ 𝑡 → ((∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
150 | 137, 149 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ 𝑡 → (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
151 | 150 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝑡 → (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧)))) |
152 | 129, 151 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑡 → (𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
153 | 127, 152 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ 𝑋 → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
154 | 153 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = ∩
𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ 𝑋 → (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
155 | 154 | imp31 418 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
156 | 155 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑧 ∈ 𝑡 → 𝑣 ∈ 𝑧))) |
157 | 156 | ralrimdv 3149 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → ∀𝑧 ∈ 𝑡 𝑣 ∈ 𝑧)) |
158 | | vex 3449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑣 ∈ V |
159 | 158 | elint2 4914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ ∩ 𝑡
↔ ∀𝑧 ∈
𝑡 𝑣 ∈ 𝑧) |
160 | 157, 159 | syl6ibr 251 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ ∩ 𝑡)) |
161 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = ∩
𝑡 → (𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡)) |
162 | 161 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡)) |
163 | 160, 162 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑤)) |
164 | 121, 163 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (¬ ∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑤)) |
165 | 164 | orrd 861 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤)) |
166 | 165 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → (∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤))) |
167 | | orc 865 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑠 ∈
𝑡 𝑦 ∈ (𝑓‘𝑠) → (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
168 | 167 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
169 | 168 | eximi 1837 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
170 | | equid 2015 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑤 = 𝑤 |
171 | | vex 3449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑤 ∈ V |
172 | | equequ1 2028 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑤 → (𝑦 = 𝑤 ↔ 𝑤 = 𝑤)) |
173 | 138, 172 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → ((𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) ↔ (𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤))) |
174 | 171, 173 | spcev 3565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤)) |
175 | 170, 174 | mpan2 689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑤 → ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤)) |
176 | | olc 866 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
177 | 176 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) → (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
178 | 177 | eximi 1837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
179 | 175, 178 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ 𝑤 → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
180 | 169, 179 | jaoi 855 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
181 | | eluni 4868 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
182 | | elun 4108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (𝑦 ∈ ∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑦 ∈ {𝑤})) |
183 | | eliun 4958 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ↔ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) |
184 | | velsn 4602 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤) |
185 | 183, 184 | orbi12i 913 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑦 ∈ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
186 | 182, 185 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
187 | 186 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) ↔ (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
188 | 187 | exbii 1850 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
189 | 181, 188 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) ↔ 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
190 | 180, 189 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢
((∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤) → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
191 | 166, 190 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
192 | 191 | ad5ant25 760 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑡 ∈
(𝒫 𝑥 ∩ Fin)
∧ 𝑤 = ∩ 𝑡)
∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
193 | 192 | ad2ant2l 744 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
194 | 193 | ssrdv 3950 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑋 ⊆ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
195 | | elun 4108 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (𝑣 ∈ ∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑣 ∈ {𝑤})) |
196 | | eliun 4958 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ↔ ∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠)) |
197 | | velsn 4602 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ {𝑤} ↔ 𝑣 = 𝑤) |
198 | 196, 197 | orbi12i 913 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑣 ∈ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤)) |
199 | 195, 198 | bitri 274 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤)) |
200 | | nfra1 3267 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) |
201 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠 𝑣 ⊆ 𝑋 |
202 | | rsp 3230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑠 ∈ 𝑡 → 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
203 | | eqimss2 4001 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 = (∪
(𝑓‘𝑠) ∪ 𝑠) → (∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋) |
204 | | elssuni 4898 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ ∪ (𝑓‘𝑠)) |
205 | | ssun3 4134 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ⊆ ∪ (𝑓‘𝑠) → 𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠)) |
206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠)) |
207 | | sstr 3952 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠) ∧ (∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋) → 𝑣 ⊆ 𝑋) |
208 | 207 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋 → (𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠) → 𝑣 ⊆ 𝑋)) |
209 | 203, 206,
208 | syl2im 40 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 = (∪
(𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
210 | 202, 209 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑠 ∈ 𝑡 → (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋))) |
211 | 200, 201,
210 | rexlimd 3249 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
212 | 211 | ad2antll 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
213 | | elpwi 4567 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → 𝑢 ⊆ (fi‘𝑥)) |
214 | 213 | ad2antrl 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → 𝑢 ⊆ (fi‘𝑥)) |
215 | 214 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑢 ⊆ (fi‘𝑥)) |
216 | 215, 99 | sseldd 3945 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ∈ (fi‘𝑥)) |
217 | | elssuni 4898 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (fi‘𝑥) → 𝑤 ⊆ ∪
(fi‘𝑥)) |
218 | 216, 217 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ⊆ ∪
(fi‘𝑥)) |
219 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥) |
220 | 59, 219 | eqtr2di 2793 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ (fi‘𝑥) = ∪ 𝐽) |
221 | 220, 66 | eqtr4di 2794 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ (fi‘𝑥) = 𝑋) |
222 | 221 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ (fi‘𝑥) = 𝑋) |
223 | 222 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪
(fi‘𝑥) = 𝑋) |
224 | 218, 223 | sseqtrd 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ⊆ 𝑋) |
225 | | sseq1 3969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑤 → (𝑣 ⊆ 𝑋 ↔ 𝑤 ⊆ 𝑋)) |
226 | 224, 225 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 = 𝑤 → 𝑣 ⊆ 𝑋)) |
227 | 212, 226 | jaod 857 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ((∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤) → 𝑣 ⊆ 𝑋)) |
228 | 199, 227 | biimtrid 241 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) → 𝑣 ⊆ 𝑋)) |
229 | 228 | ralrimiv 3142 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∀𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})𝑣 ⊆ 𝑋) |
230 | | unissb 4900 |
. . . . . . . . . . . . . . 15
⊢ (∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑋 ↔ ∀𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})𝑣 ⊆ 𝑋) |
231 | 229, 230 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑋) |
232 | 194, 231 | eqssd 3961 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑋 = ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
233 | | unieq 4876 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) → ∪ 𝑏 = ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
234 | 233 | rspceeqv 3595 |
. . . . . . . . . . . . 13
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏) |
235 | 116, 232,
234 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏) |
236 | 235 | ex 413 |
. . . . . . . . . . 11
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
237 | 236 | exlimdv 1936 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
238 | 78, 88, 237 | 3syld 60 |
. . . . . . . . 9
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
239 | 4, 238 | biimtrid 241 |
. . . . . . . 8
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
240 | | dfrex2 3076 |
. . . . . . . 8
⊢
(∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏
↔ ¬ ∀𝑏
∈ (𝒫 𝑢 ∩
Fin) ¬ 𝑋 = ∪ 𝑏) |
241 | 239, 240 | syl6ib 250 |
. . . . . . 7
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 → ¬ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) |
242 | 241 | con4d 115 |
. . . . . 6
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) |
243 | 242 | exp32 421 |
. . . . 5
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → (𝑤 ∈ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))) |
244 | 243 | com24 95 |
. . . 4
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))) |
245 | 244 | exp32 421 |
. . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑢 ∈ 𝒫 (fi‘𝑥) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))))) |
246 | 245 | imp45 430 |
. 2
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) |
247 | 246 | imp31 418 |
1
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |