| Step | Hyp | Ref
| Expression |
| 1 | | dfrex2 3063 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 ↔ ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
| 2 | 1 | ralbii 3082 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 ↔ ∀𝑠 ∈ 𝑡 ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
| 3 | | ralnex 3062 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝑡 ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 ↔ ¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
| 4 | 2, 3 | bitr2i 276 |
. . . . . . . . 9
⊢ (¬
∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 ↔ ∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛) |
| 5 | | elin 3942 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ↔ (𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin)) |
| 6 | | elpwi 4582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) → 𝑛 ⊆ (𝑢 ∪ {𝑠})) |
| 7 | 6 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → 𝑛 ⊆ (𝑢 ∪ {𝑠})) |
| 8 | | uncom 4133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∪ {𝑠}) = ({𝑠} ∪ 𝑢) |
| 9 | 7, 8 | sseqtrdi 3999 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → 𝑛 ⊆ ({𝑠} ∪ 𝑢)) |
| 10 | | ssundif 4463 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ⊆ ({𝑠} ∪ 𝑢) ↔ (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
| 11 | 9, 10 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
| 12 | | diffi 9189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ Fin → (𝑛 ∖ {𝑠}) ∈ Fin) |
| 13 | 12 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → (𝑛 ∖ {𝑠}) ∈ Fin) |
| 14 | 11, 13 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
| 15 | 5, 14 | sylbi 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
| 17 | 16 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
| 18 | | elin 3942 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
| 19 | | vex 3463 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑢 ∈ V |
| 20 | 19 | elpw2 5304 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ↔ (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
| 21 | 20 | anbi1i 624 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin) ↔ ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
| 22 | 18, 21 | bitr2i 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin) ↔ (𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin)) |
| 23 | 17, 22 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → (𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin)) |
| 24 | | simprrr 781 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 = ∪ 𝑛) |
| 25 | | eldif 3936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑛 ∖ {𝑠}) ↔ (𝑥 ∈ 𝑛 ∧ ¬ 𝑥 ∈ {𝑠})) |
| 26 | 25 | simplbi2 500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑛 → (¬ 𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
| 27 | | elun 4128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) ↔ (𝑥 ∈ (𝑛 ∖ {𝑠}) ∨ 𝑥 ∈ {𝑠})) |
| 28 | | orcom 870 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ (𝑥 ∈ (𝑛 ∖ {𝑠}) ∨ 𝑥 ∈ {𝑠})) |
| 29 | 27, 28 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) ↔ (𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
| 30 | | df-or 848 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ (¬ 𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
| 31 | 29, 30 | bitr2i 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ 𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
| 32 | 26, 31 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑛 → 𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
| 33 | 32 | ssriv 3962 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑛 ⊆ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) |
| 34 | | uniss 4891 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ⊆ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) → ∪ 𝑛 ⊆ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠})) |
| 35 | 33, 34 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑛
⊆ ∪ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
| 36 | | uniun 4906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠}) = (∪ (𝑛
∖ {𝑠}) ∪ ∪ {𝑠}) |
| 37 | | unisnv 4903 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ {𝑠}
= 𝑠 |
| 38 | 37 | uneq2i 4140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ (𝑛
∖ {𝑠}) ∪ ∪ {𝑠})
= (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠) |
| 39 | 36, 38 | eqtri 2758 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠}) = (∪ (𝑛
∖ {𝑠}) ∪ 𝑠) |
| 40 | 35, 39 | sseqtrdi 3999 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑛
⊆ (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
| 41 | 24, 40 | eqsstrd 3993 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 ⊆ (∪
(𝑛 ∖ {𝑠}) ∪ 𝑠)) |
| 42 | | difss 4111 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∖ {𝑠}) ⊆ 𝑛 |
| 43 | 42 | unissi 4892 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ (𝑛
∖ {𝑠}) ⊆ ∪ 𝑛 |
| 44 | | sseq2 3985 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 = ∪
𝑛 → (∪ (𝑛
∖ {𝑠}) ⊆ 𝑋 ↔ ∪ (𝑛
∖ {𝑠}) ⊆ ∪ 𝑛)) |
| 45 | 43, 44 | mpbiri 258 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
𝑛 → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
| 47 | 46 | ad2antll 729 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
| 48 | | elinel1 4176 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ 𝒫 𝑥) |
| 49 | 48 | elpwid 4584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ⊆ 𝑥) |
| 50 | 49 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) → 𝑡 ⊆ 𝑥) |
| 51 | 50 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑡 ⊆ 𝑥) |
| 52 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑡) |
| 53 | 51, 52 | sseldd 3959 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑥) |
| 54 | | elssuni 4913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝑥 → 𝑠 ⊆ ∪ 𝑥) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ⊆ ∪ 𝑥) |
| 56 | | fibas 22915 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(fi‘𝑥) ∈
TopBases |
| 57 | | unitg 22905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((fi‘𝑥) ∈
TopBases → ∪ (topGen‘(fi‘𝑥)) = ∪ (fi‘𝑥)) |
| 58 | 56, 57 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥)) |
| 59 | | unieq 4894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
| 60 | 59 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
| 61 | 60 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
| 62 | | vex 3463 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ∈ V |
| 63 | | fiuni 9440 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ V → ∪ 𝑥 =
∪ (fi‘𝑥)) |
| 64 | 62, 63 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
∪ (fi‘𝑥)) |
| 65 | 58, 61, 64 | 3eqtr4rd 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
∪ 𝐽) |
| 66 | | alexsubALT.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑋 = ∪
𝐽 |
| 67 | 65, 66 | eqtr4di 2788 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
𝑋) |
| 68 | 55, 67 | sseqtrd 3995 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ⊆ 𝑋) |
| 69 | 47, 68 | unssd 4167 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → (∪ (𝑛
∖ {𝑠}) ∪ 𝑠) ⊆ 𝑋) |
| 70 | 41, 69 | eqssd 3976 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
| 71 | | unieq 4894 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑛 ∖ {𝑠}) → ∪ 𝑚 = ∪
(𝑛 ∖ {𝑠})) |
| 72 | 71 | uneq1d 4142 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑛 ∖ {𝑠}) → (∪ 𝑚 ∪ 𝑠) = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
| 73 | 72 | rspceeqv 3624 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) |
| 74 | 23, 70, 73 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) |
| 75 | 74 | expr 456 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
| 76 | 75 | expd 415 |
. . . . . . . . . . . 12
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) → (𝑋 = ∪ 𝑛 → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)))) |
| 77 | 76 | rexlimdv 3139 |
. . . . . . . . . . 11
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → (∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
| 78 | 77 | ralimdva 3152 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
| 79 | | elinel2 4177 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ Fin) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) → 𝑡 ∈ Fin) |
| 81 | | unieq 4894 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑓‘𝑠) → ∪ 𝑚 = ∪
(𝑓‘𝑠)) |
| 82 | 81 | uneq1d 4142 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑓‘𝑠) → (∪ 𝑚 ∪ 𝑠) = (∪ (𝑓‘𝑠) ∪ 𝑠)) |
| 83 | 82 | eqeq2d 2746 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑓‘𝑠) → (𝑋 = (∪ 𝑚 ∪ 𝑠) ↔ 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
| 84 | 83 | ac6sfi 9292 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ Fin ∧ ∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
| 85 | 84 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ Fin →
(∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
| 86 | 80, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
| 87 | 86 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
| 88 | 87 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
| 89 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin)) |
| 90 | | elin 3942 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((𝑓‘𝑠) ∈ 𝒫 𝑢 ∧ (𝑓‘𝑠) ∈ Fin)) |
| 91 | | elpwi 4582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑠) ∈ 𝒫 𝑢 → (𝑓‘𝑠) ⊆ 𝑢) |
| 92 | 91 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓‘𝑠) ∈ 𝒫 𝑢 ∧ (𝑓‘𝑠) ∈ Fin) → (𝑓‘𝑠) ⊆ 𝑢) |
| 93 | 90, 92 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin) → (𝑓‘𝑠) ⊆ 𝑢) |
| 94 | 89, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ⊆ 𝑢) |
| 95 | 94 | ralrimiva 3132 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
| 96 | | iunss 5021 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢 ↔ ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
| 97 | 95, 96 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
| 98 | 97 | ad2antrl 728 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
| 99 | | simplrr 777 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ∈ 𝑢) |
| 100 | 99 | snssd 4785 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → {𝑤} ⊆ 𝑢) |
| 101 | 98, 100 | unssd 4167 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢) |
| 102 | 89 | elin2d 4180 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ∈ Fin) |
| 103 | 102 | ralrimiva 3132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
| 104 | | iunfi 9355 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ Fin ∧ ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
| 105 | 80, 103, 104 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin)) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
| 106 | 105 | ad4ant14 752 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑡 ∈
(𝒫 𝑥 ∩ Fin)
∧ 𝑤 = ∩ 𝑡)
∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) ∧ 𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin)) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
| 107 | 106 | ad2ant2lr 748 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
| 108 | | snfi 9057 |
. . . . . . . . . . . . . . . 16
⊢ {𝑤} ∈ Fin |
| 109 | | unfi 9185 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin ∧ {𝑤} ∈ Fin) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) |
| 110 | 107, 108,
109 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) |
| 111 | 101, 110 | jca 511 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
| 112 | | elin 3942 |
. . . . . . . . . . . . . . 15
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
| 113 | 19 | elpw2 5304 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢) |
| 114 | 113 | anbi1i 624 |
. . . . . . . . . . . . . . 15
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) ↔ ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
| 115 | 112, 114 | bitr2i 276 |
. . . . . . . . . . . . . 14
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) ↔ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
| 116 | 111, 115 | sylib 218 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
| 117 | | ralnex 3062 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑠 ∈
𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) |
| 118 | 117 | imbi2i 336 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ (𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
| 119 | 118 | albii 1819 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ ∀𝑦(𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
| 120 | | alinexa 1843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ↔ ¬ ∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
| 121 | 119, 120 | bitr2i 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ↔ ∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠))) |
| 122 | | fveq2 6876 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑠 = 𝑧 → (𝑓‘𝑠) = (𝑓‘𝑧)) |
| 123 | 122 | unieqd 4896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑠 = 𝑧 → ∪ (𝑓‘𝑠) = ∪ (𝑓‘𝑧)) |
| 124 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑠 = 𝑧 → 𝑠 = 𝑧) |
| 125 | 123, 124 | uneq12d 4144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑠 = 𝑧 → (∪ (𝑓‘𝑠) ∪ 𝑠) = (∪ (𝑓‘𝑧) ∪ 𝑧)) |
| 126 | 125 | eqeq2d 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = 𝑧 → (𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) ↔ 𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧))) |
| 127 | 126 | rspcv 3597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → 𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧))) |
| 128 | | eleq2 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑋 = (∪
(𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 ↔ 𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧))) |
| 129 | 128 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑋 = (∪
(𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 → 𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧))) |
| 130 | | elun 4128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) ↔ (𝑣 ∈ ∪ (𝑓‘𝑧) ∨ 𝑣 ∈ 𝑧)) |
| 131 | | eluni 4886 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 ∈ ∪ (𝑓‘𝑧) ↔ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧))) |
| 132 | 131 | orbi1i 913 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑣 ∈ ∪ (𝑓‘𝑧) ∨ 𝑣 ∈ 𝑧) ↔ (∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧)) |
| 133 | | df-or 848 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧) ↔ (¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
| 134 | | alinexa 1843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) ↔ ¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧))) |
| 135 | 134 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧) ↔ (¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
| 136 | 133, 135 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧) ↔ (∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
| 137 | 130, 132,
136 | 3bitri 297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) ↔ (∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
| 138 | | eleq2 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑤 → (𝑣 ∈ 𝑦 ↔ 𝑣 ∈ 𝑤)) |
| 139 | | eleq1w 2817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑓‘𝑠) ↔ 𝑤 ∈ (𝑓‘𝑠))) |
| 140 | 139 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑤 → (¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ¬ 𝑤 ∈ (𝑓‘𝑠))) |
| 141 | 140 | ralbidv 3163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑤 → (∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠))) |
| 142 | 138, 141 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑤 → ((𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ (𝑣 ∈ 𝑤 → ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠)))) |
| 143 | 142 | spvv 1996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑤 → ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠))) |
| 144 | 122 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑠 = 𝑧 → (𝑤 ∈ (𝑓‘𝑠) ↔ 𝑤 ∈ (𝑓‘𝑧))) |
| 145 | 144 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑠 = 𝑧 → (¬ 𝑤 ∈ (𝑓‘𝑠) ↔ ¬ 𝑤 ∈ (𝑓‘𝑧))) |
| 146 | 145 | rspcv 3597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠) → ¬ 𝑤 ∈ (𝑓‘𝑧))) |
| 147 | 143, 146 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)))) |
| 148 | 147 | alrimdv 1929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → ∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)))) |
| 149 | 148 | imim1d 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ 𝑡 → ((∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
| 150 | 137, 149 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ 𝑡 → (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
| 151 | 150 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝑡 → (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧)))) |
| 152 | 129, 151 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑡 → (𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
| 153 | 127, 152 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ 𝑋 → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
| 154 | 153 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = ∩
𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ 𝑋 → (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
| 155 | 154 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
| 156 | 155 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑧 ∈ 𝑡 → 𝑣 ∈ 𝑧))) |
| 157 | 156 | ralrimdv 3138 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → ∀𝑧 ∈ 𝑡 𝑣 ∈ 𝑧)) |
| 158 | | vex 3463 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑣 ∈ V |
| 159 | 158 | elint2 4929 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ ∩ 𝑡
↔ ∀𝑧 ∈
𝑡 𝑣 ∈ 𝑧) |
| 160 | 157, 159 | imbitrrdi 252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ ∩ 𝑡)) |
| 161 | | eleq2 2823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = ∩
𝑡 → (𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡)) |
| 162 | 161 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡)) |
| 163 | 160, 162 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑤)) |
| 164 | 121, 163 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (¬ ∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑤)) |
| 165 | 164 | orrd 863 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤)) |
| 166 | 165 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → (∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤))) |
| 167 | | orc 867 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑠 ∈
𝑡 𝑦 ∈ (𝑓‘𝑠) → (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
| 168 | 167 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 169 | 168 | eximi 1835 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 170 | | equid 2011 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑤 = 𝑤 |
| 171 | | vex 3463 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑤 ∈ V |
| 172 | | equequ1 2024 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑤 → (𝑦 = 𝑤 ↔ 𝑤 = 𝑤)) |
| 173 | 138, 172 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → ((𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) ↔ (𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤))) |
| 174 | 171, 173 | spcev 3585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤)) |
| 175 | 170, 174 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑤 → ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤)) |
| 176 | | olc 868 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
| 177 | 176 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) → (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 178 | 177 | eximi 1835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 179 | 175, 178 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ 𝑤 → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 180 | 169, 179 | jaoi 857 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 181 | | eluni 4886 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
| 182 | | elun 4128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (𝑦 ∈ ∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑦 ∈ {𝑤})) |
| 183 | | eliun 4971 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ↔ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) |
| 184 | | velsn 4617 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤) |
| 185 | 183, 184 | orbi12i 914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑦 ∈ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
| 186 | 182, 185 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
| 187 | 186 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) ↔ (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 188 | 187 | exbii 1848 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
| 189 | 181, 188 | bitr2i 276 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) ↔ 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
| 190 | 180, 189 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢
((∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤) → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
| 191 | 166, 190 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
| 192 | 191 | ad5ant25 761 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑡 ∈
(𝒫 𝑥 ∩ Fin)
∧ 𝑤 = ∩ 𝑡)
∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
| 193 | 192 | ad2ant2l 746 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
| 194 | 193 | ssrdv 3964 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑋 ⊆ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
| 195 | | elun 4128 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (𝑣 ∈ ∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑣 ∈ {𝑤})) |
| 196 | | eliun 4971 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ↔ ∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠)) |
| 197 | | velsn 4617 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ {𝑤} ↔ 𝑣 = 𝑤) |
| 198 | 196, 197 | orbi12i 914 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑣 ∈ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤)) |
| 199 | 195, 198 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤)) |
| 200 | | nfra1 3266 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) |
| 201 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠 𝑣 ⊆ 𝑋 |
| 202 | | rsp 3230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑠 ∈ 𝑡 → 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
| 203 | | eqimss2 4018 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 = (∪
(𝑓‘𝑠) ∪ 𝑠) → (∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋) |
| 204 | | elssuni 4913 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ ∪ (𝑓‘𝑠)) |
| 205 | | ssun3 4155 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ⊆ ∪ (𝑓‘𝑠) → 𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠)) |
| 206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠)) |
| 207 | | sstr 3967 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠) ∧ (∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋) → 𝑣 ⊆ 𝑋) |
| 208 | 207 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋 → (𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠) → 𝑣 ⊆ 𝑋)) |
| 209 | 203, 206,
208 | syl2im 40 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 = (∪
(𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
| 210 | 202, 209 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑠 ∈ 𝑡 → (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋))) |
| 211 | 200, 201,
210 | rexlimd 3249 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
| 212 | 211 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
| 213 | | elpwi 4582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → 𝑢 ⊆ (fi‘𝑥)) |
| 214 | 213 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → 𝑢 ⊆ (fi‘𝑥)) |
| 215 | 214 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑢 ⊆ (fi‘𝑥)) |
| 216 | 215, 99 | sseldd 3959 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ∈ (fi‘𝑥)) |
| 217 | | elssuni 4913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (fi‘𝑥) → 𝑤 ⊆ ∪
(fi‘𝑥)) |
| 218 | 216, 217 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ⊆ ∪
(fi‘𝑥)) |
| 219 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥) |
| 220 | 59, 219 | eqtr2di 2787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ (fi‘𝑥) = ∪ 𝐽) |
| 221 | 220, 66 | eqtr4di 2788 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ (fi‘𝑥) = 𝑋) |
| 222 | 221 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ (fi‘𝑥) = 𝑋) |
| 223 | 222 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪
(fi‘𝑥) = 𝑋) |
| 224 | 218, 223 | sseqtrd 3995 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ⊆ 𝑋) |
| 225 | | sseq1 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑤 → (𝑣 ⊆ 𝑋 ↔ 𝑤 ⊆ 𝑋)) |
| 226 | 224, 225 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 = 𝑤 → 𝑣 ⊆ 𝑋)) |
| 227 | 212, 226 | jaod 859 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ((∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤) → 𝑣 ⊆ 𝑋)) |
| 228 | 199, 227 | biimtrid 242 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) → 𝑣 ⊆ 𝑋)) |
| 229 | 228 | ralrimiv 3131 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∀𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})𝑣 ⊆ 𝑋) |
| 230 | | unissb 4915 |
. . . . . . . . . . . . . . 15
⊢ (∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑋 ↔ ∀𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})𝑣 ⊆ 𝑋) |
| 231 | 229, 230 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑋) |
| 232 | 194, 231 | eqssd 3976 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑋 = ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
| 233 | | unieq 4894 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) → ∪ 𝑏 = ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
| 234 | 233 | rspceeqv 3624 |
. . . . . . . . . . . . 13
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏) |
| 235 | 116, 232,
234 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏) |
| 236 | 235 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 237 | 236 | exlimdv 1933 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 238 | 78, 88, 237 | 3syld 60 |
. . . . . . . . 9
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 239 | 4, 238 | biimtrid 242 |
. . . . . . . 8
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
| 240 | | dfrex2 3063 |
. . . . . . . 8
⊢
(∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏
↔ ¬ ∀𝑏
∈ (𝒫 𝑢 ∩
Fin) ¬ 𝑋 = ∪ 𝑏) |
| 241 | 239, 240 | imbitrdi 251 |
. . . . . . 7
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 → ¬ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) |
| 242 | 241 | con4d 115 |
. . . . . 6
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) |
| 243 | 242 | exp32 420 |
. . . . 5
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → (𝑤 ∈ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))) |
| 244 | 243 | com24 95 |
. . . 4
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))) |
| 245 | 244 | exp32 420 |
. . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑢 ∈ 𝒫 (fi‘𝑥) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))))) |
| 246 | 245 | imp45 429 |
. 2
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) |
| 247 | 246 | imp31 417 |
1
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |