Step | Hyp | Ref
| Expression |
1 | | dfrex2 3170 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
(𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 ↔ ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
2 | 1 | ralbii 3092 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 ↔ ∀𝑠 ∈ 𝑡 ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
3 | | ralnex 3167 |
. . . . . . . . . 10
⊢
(∀𝑠 ∈
𝑡 ¬ ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 ↔ ¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |
4 | 2, 3 | bitr2i 275 |
. . . . . . . . 9
⊢ (¬
∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 ↔ ∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛) |
5 | | elin 3903 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ↔ (𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin)) |
6 | | elpwi 4542 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) → 𝑛 ⊆ (𝑢 ∪ {𝑠})) |
7 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → 𝑛 ⊆ (𝑢 ∪ {𝑠})) |
8 | | uncom 4087 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∪ {𝑠}) = ({𝑠} ∪ 𝑢) |
9 | 7, 8 | sseqtrdi 3971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → 𝑛 ⊆ ({𝑠} ∪ 𝑢)) |
10 | | ssundif 4418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ⊆ ({𝑠} ∪ 𝑢) ↔ (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
11 | 9, 10 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
12 | | diffi 8962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ Fin → (𝑛 ∖ {𝑠}) ∈ Fin) |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → (𝑛 ∖ {𝑠}) ∈ Fin) |
14 | 11, 13 | jca 512 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ 𝒫 (𝑢 ∪ {𝑠}) ∧ 𝑛 ∈ Fin) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
15 | 5, 14 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
17 | 16 | ad2antll 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
18 | | elin 3903 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
19 | | vex 3436 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑢 ∈ V |
20 | 19 | elpw2 5269 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ↔ (𝑛 ∖ {𝑠}) ⊆ 𝑢) |
21 | 20 | anbi1i 624 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∖ {𝑠}) ∈ 𝒫 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin) ↔ ((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin)) |
22 | 18, 21 | bitr2i 275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∖ {𝑠}) ⊆ 𝑢 ∧ (𝑛 ∖ {𝑠}) ∈ Fin) ↔ (𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin)) |
23 | 17, 22 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → (𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin)) |
24 | | simprrr 779 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 = ∪ 𝑛) |
25 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑛 ∖ {𝑠}) ↔ (𝑥 ∈ 𝑛 ∧ ¬ 𝑥 ∈ {𝑠})) |
26 | 25 | simplbi2 501 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑛 → (¬ 𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
27 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) ↔ (𝑥 ∈ (𝑛 ∖ {𝑠}) ∨ 𝑥 ∈ {𝑠})) |
28 | | orcom 867 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ (𝑥 ∈ (𝑛 ∖ {𝑠}) ∨ 𝑥 ∈ {𝑠})) |
29 | 27, 28 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) ↔ (𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
30 | | df-or 845 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ {𝑠} ∨ 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ (¬ 𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠}))) |
31 | 29, 30 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑥 ∈ {𝑠} → 𝑥 ∈ (𝑛 ∖ {𝑠})) ↔ 𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
32 | 26, 31 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑛 → 𝑥 ∈ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
33 | 32 | ssriv 3925 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑛 ⊆ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) |
34 | | uniss 4847 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ⊆ ((𝑛 ∖ {𝑠}) ∪ {𝑠}) → ∪ 𝑛 ⊆ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠})) |
35 | 33, 34 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑛
⊆ ∪ ((𝑛 ∖ {𝑠}) ∪ {𝑠})) |
36 | | uniun 4864 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠}) = (∪ (𝑛
∖ {𝑠}) ∪ ∪ {𝑠}) |
37 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑠 ∈ V |
38 | 37 | unisn 4861 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ {𝑠}
= 𝑠 |
39 | 38 | uneq2i 4094 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ (𝑛
∖ {𝑠}) ∪ ∪ {𝑠})
= (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠) |
40 | 36, 39 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ((𝑛
∖ {𝑠}) ∪ {𝑠}) = (∪ (𝑛
∖ {𝑠}) ∪ 𝑠) |
41 | 35, 40 | sseqtrdi 3971 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑛
⊆ (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
42 | 24, 41 | eqsstrd 3959 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 ⊆ (∪
(𝑛 ∖ {𝑠}) ∪ 𝑠)) |
43 | | difss 4066 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∖ {𝑠}) ⊆ 𝑛 |
44 | 43 | unissi 4848 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ (𝑛
∖ {𝑠}) ⊆ ∪ 𝑛 |
45 | | sseq2 3947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 = ∪
𝑛 → (∪ (𝑛
∖ {𝑠}) ⊆ 𝑋 ↔ ∪ (𝑛
∖ {𝑠}) ⊆ ∪ 𝑛)) |
46 | 44, 45 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 = ∪
𝑛 → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
48 | 47 | ad2antll 726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ (𝑛
∖ {𝑠}) ⊆ 𝑋) |
49 | | elinel1 4129 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ 𝒫 𝑥) |
50 | 49 | elpwid 4544 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ⊆ 𝑥) |
51 | 50 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) → 𝑡 ⊆ 𝑥) |
52 | 51 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑡 ⊆ 𝑥) |
53 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑡) |
54 | 52, 53 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ∈ 𝑥) |
55 | | elssuni 4871 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝑥 → 𝑠 ⊆ ∪ 𝑥) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ⊆ ∪ 𝑥) |
57 | | fibas 22127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(fi‘𝑥) ∈
TopBases |
58 | | unitg 22117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((fi‘𝑥) ∈
TopBases → ∪ (topGen‘(fi‘𝑥)) = ∪ (fi‘𝑥)) |
59 | 57, 58 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥)) |
60 | | unieq 4850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
61 | 60 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
62 | 61 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝐽 =
∪ (topGen‘(fi‘𝑥))) |
63 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ∈ V |
64 | | fiuni 9187 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ V → ∪ 𝑥 =
∪ (fi‘𝑥)) |
65 | 63, 64 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
∪ (fi‘𝑥)) |
66 | 59, 62, 65 | 3eqtr4rd 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
∪ 𝐽) |
67 | | alexsubALT.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑋 = ∪
𝐽 |
68 | 66, 67 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∪ 𝑥 =
𝑋) |
69 | 56, 68 | sseqtrd 3961 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑠 ⊆ 𝑋) |
70 | 48, 69 | unssd 4120 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → (∪ (𝑛
∖ {𝑠}) ∪ 𝑠) ⊆ 𝑋) |
71 | 42, 70 | eqssd 3938 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → 𝑋 = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
72 | | unieq 4850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑛 ∖ {𝑠}) → ∪ 𝑚 = ∪
(𝑛 ∖ {𝑠})) |
73 | 72 | uneq1d 4096 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑛 ∖ {𝑠}) → (∪ 𝑚 ∪ 𝑠) = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) |
74 | 73 | rspceeqv 3575 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∖ {𝑠}) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = (∪ (𝑛 ∖ {𝑠}) ∪ 𝑠)) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) |
75 | 23, 71, 74 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑠 ∈ 𝑡 ∧ (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛))) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) |
76 | 75 | expr 457 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → ((𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ∧ 𝑋 = ∪ 𝑛) → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
77 | 76 | expd 416 |
. . . . . . . . . . . 12
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → (𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) → (𝑋 = ∪ 𝑛 → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)))) |
78 | 77 | rexlimdv 3212 |
. . . . . . . . . . 11
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ 𝑠 ∈ 𝑡) → (∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
79 | 78 | ralimdva 3108 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠))) |
80 | | elinel2 4130 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (𝒫 𝑥 ∩ Fin) → 𝑡 ∈ Fin) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) → 𝑡 ∈ Fin) |
82 | | unieq 4850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑓‘𝑠) → ∪ 𝑚 = ∪
(𝑓‘𝑠)) |
83 | 82 | uneq1d 4096 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑓‘𝑠) → (∪ 𝑚 ∪ 𝑠) = (∪ (𝑓‘𝑠) ∪ 𝑠)) |
84 | 83 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑓‘𝑠) → (𝑋 = (∪ 𝑚 ∪ 𝑠) ↔ 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
85 | 84 | ac6sfi 9058 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ Fin ∧ ∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠)) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
86 | 85 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ Fin →
(∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
87 | 81, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
88 | 87 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
89 | 88 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑚 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = (∪ 𝑚 ∪ 𝑠) → ∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)))) |
90 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin)) |
91 | | elin 3903 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((𝑓‘𝑠) ∈ 𝒫 𝑢 ∧ (𝑓‘𝑠) ∈ Fin)) |
92 | | elpwi 4542 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑠) ∈ 𝒫 𝑢 → (𝑓‘𝑠) ⊆ 𝑢) |
93 | 92 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓‘𝑠) ∈ 𝒫 𝑢 ∧ (𝑓‘𝑠) ∈ Fin) → (𝑓‘𝑠) ⊆ 𝑢) |
94 | 91, 93 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑠) ∈ (𝒫 𝑢 ∩ Fin) → (𝑓‘𝑠) ⊆ 𝑢) |
95 | 90, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ⊆ 𝑢) |
96 | 95 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
97 | | iunss 4975 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢 ↔ ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
98 | 96, 97 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
99 | 98 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ⊆ 𝑢) |
100 | | simplrr 775 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ∈ 𝑢) |
101 | 100 | snssd 4742 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → {𝑤} ⊆ 𝑢) |
102 | 99, 101 | unssd 4120 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢) |
103 | 90 | elin2d 4133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ 𝑠 ∈ 𝑡) → (𝑓‘𝑠) ∈ Fin) |
104 | 103 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) → ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
105 | | iunfi 9107 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ Fin ∧ ∀𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
106 | 81, 104, 105 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩
𝑡) ∧ 𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin)) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
107 | 106 | ad4ant14 749 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑡 ∈
(𝒫 𝑥 ∩ Fin)
∧ 𝑤 = ∩ 𝑡)
∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) ∧ 𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin)) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
108 | 107 | ad2ant2lr 745 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin) |
109 | | snfi 8834 |
. . . . . . . . . . . . . . . 16
⊢ {𝑤} ∈ Fin |
110 | | unfi 8955 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∈ Fin ∧ {𝑤} ∈ Fin) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) |
111 | 108, 109,
110 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) |
112 | 102, 111 | jca 512 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
113 | | elin 3903 |
. . . . . . . . . . . . . . 15
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ↔ ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
114 | 19 | elpw2 5269 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢) |
115 | 114 | anbi1i 624 |
. . . . . . . . . . . . . . 15
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ 𝒫 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) ↔ ((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin)) |
116 | 113, 115 | bitr2i 275 |
. . . . . . . . . . . . . 14
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑢 ∧ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ Fin) ↔ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
117 | 112, 116 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
118 | | ralnex 3167 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑠 ∈
𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) |
119 | 118 | imbi2i 336 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ (𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
120 | 119 | albii 1822 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ ∀𝑦(𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
121 | | alinexa 1845 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ¬ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ↔ ¬ ∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠))) |
122 | 120, 121 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ↔ ∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠))) |
123 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑠 = 𝑧 → (𝑓‘𝑠) = (𝑓‘𝑧)) |
124 | 123 | unieqd 4853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑠 = 𝑧 → ∪ (𝑓‘𝑠) = ∪ (𝑓‘𝑧)) |
125 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑠 = 𝑧 → 𝑠 = 𝑧) |
126 | 124, 125 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑠 = 𝑧 → (∪ (𝑓‘𝑠) ∪ 𝑠) = (∪ (𝑓‘𝑧) ∪ 𝑧)) |
127 | 126 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = 𝑧 → (𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) ↔ 𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧))) |
128 | 127 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → 𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧))) |
129 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑋 = (∪
(𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 ↔ 𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧))) |
130 | 129 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑋 = (∪
(𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 → 𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧))) |
131 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) ↔ (𝑣 ∈ ∪ (𝑓‘𝑧) ∨ 𝑣 ∈ 𝑧)) |
132 | | eluni 4842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑣 ∈ ∪ (𝑓‘𝑧) ↔ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧))) |
133 | 132 | orbi1i 911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑣 ∈ ∪ (𝑓‘𝑧) ∨ 𝑣 ∈ 𝑧) ↔ (∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧)) |
134 | | df-or 845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧) ↔ (¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
135 | | alinexa 1845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) ↔ ¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧))) |
136 | 135 | imbi1i 350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧) ↔ (¬ ∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
137 | 134, 136 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((∃𝑤(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ (𝑓‘𝑧)) ∨ 𝑣 ∈ 𝑧) ↔ (∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
138 | 131, 133,
137 | 3bitri 297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) ↔ (∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧)) |
139 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑤 → (𝑣 ∈ 𝑦 ↔ 𝑣 ∈ 𝑤)) |
140 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑓‘𝑠) ↔ 𝑤 ∈ (𝑓‘𝑠))) |
141 | 140 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑤 → (¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ¬ 𝑤 ∈ (𝑓‘𝑠))) |
142 | 141 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑤 → (∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠) ↔ ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠))) |
143 | 139, 142 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑤 → ((𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) ↔ (𝑣 ∈ 𝑤 → ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠)))) |
144 | 143 | spvv 2000 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑤 → ∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠))) |
145 | 123 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑠 = 𝑧 → (𝑤 ∈ (𝑓‘𝑠) ↔ 𝑤 ∈ (𝑓‘𝑧))) |
146 | 145 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑠 = 𝑧 → (¬ 𝑤 ∈ (𝑓‘𝑠) ↔ ¬ 𝑤 ∈ (𝑓‘𝑧))) |
147 | 146 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 ¬ 𝑤 ∈ (𝑓‘𝑠) → ¬ 𝑤 ∈ (𝑓‘𝑧))) |
148 | 144, 147 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)))) |
149 | 148 | alrimdv 1932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → ∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)))) |
150 | 149 | imim1d 82 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ 𝑡 → ((∀𝑤(𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ (𝑓‘𝑧)) → 𝑣 ∈ 𝑧) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
151 | 138, 150 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ 𝑡 → (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
152 | 151 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝑡 → (𝑣 ∈ (∪ (𝑓‘𝑧) ∪ 𝑧) → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧)))) |
153 | 130, 152 | syl9r 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑡 → (𝑋 = (∪ (𝑓‘𝑧) ∪ 𝑧) → (𝑣 ∈ 𝑋 → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
154 | 128, 153 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ 𝑋 → (𝑤 = ∩ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
155 | 154 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = ∩
𝑡 → (∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ 𝑋 → (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))))) |
156 | 155 | imp31 418 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (𝑧 ∈ 𝑡 → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑧))) |
157 | 156 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → (𝑧 ∈ 𝑡 → 𝑣 ∈ 𝑧))) |
158 | 157 | ralrimdv 3105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → ∀𝑧 ∈ 𝑡 𝑣 ∈ 𝑧)) |
159 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑣 ∈ V |
160 | 159 | elint2 4886 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ ∩ 𝑡
↔ ∀𝑧 ∈
𝑡 𝑣 ∈ 𝑧) |
161 | 158, 160 | syl6ibr 251 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ ∩ 𝑡)) |
162 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = ∩
𝑡 → (𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡)) |
163 | 162 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡)) |
164 | 161, 163 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∀𝑦(𝑣 ∈ 𝑦 → ∀𝑠 ∈ 𝑡 ¬ 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑤)) |
165 | 122, 164 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (¬ ∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → 𝑣 ∈ 𝑤)) |
166 | 165 | orrd 860 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) ∧ 𝑣 ∈ 𝑋) → (∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤)) |
167 | 166 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → (∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤))) |
168 | | orc 864 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑠 ∈
𝑡 𝑦 ∈ (𝑓‘𝑠) → (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
169 | 168 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
170 | 169 | eximi 1837 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
171 | | equid 2015 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑤 = 𝑤 |
172 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑤 ∈ V |
173 | | equequ1 2028 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑤 → (𝑦 = 𝑤 ↔ 𝑤 = 𝑤)) |
174 | 139, 173 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → ((𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) ↔ (𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤))) |
175 | 172, 174 | spcev 3545 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤)) |
176 | 171, 175 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑤 → ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤)) |
177 | | olc 865 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
178 | 177 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) → (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
179 | 178 | eximi 1837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
180 | 176, 179 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ 𝑤 → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
181 | 170, 180 | jaoi 854 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤) → ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
182 | | eluni 4842 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
183 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (𝑦 ∈ ∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑦 ∈ {𝑤})) |
184 | | eliun 4928 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ↔ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) |
185 | | velsn 4577 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤) |
186 | 184, 185 | orbi12i 912 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑦 ∈ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
187 | 183, 186 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) |
188 | 187 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) ↔ (𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
189 | 188 | exbii 1850 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ 𝑦 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) ↔ ∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤))) |
190 | 182, 189 | bitr2i 275 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑦(𝑣 ∈ 𝑦 ∧ (∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠) ∨ 𝑦 = 𝑤)) ↔ 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
191 | 181, 190 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢
((∃𝑦(𝑣 ∈ 𝑦 ∧ ∃𝑠 ∈ 𝑡 𝑦 ∈ (𝑓‘𝑠)) ∨ 𝑣 ∈ 𝑤) → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
192 | 167, 191 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 = ∩
𝑡 ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
193 | 192 | ad5ant25 759 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑡 ∈
(𝒫 𝑥 ∩ Fin)
∧ 𝑤 = ∩ 𝑡)
∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
194 | 193 | ad2ant2l 743 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 ∈ 𝑋 → 𝑣 ∈ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}))) |
195 | 194 | ssrdv 3927 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑋 ⊆ ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
196 | | elun 4083 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (𝑣 ∈ ∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑣 ∈ {𝑤})) |
197 | | eliun 4928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ↔ ∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠)) |
198 | | velsn 4577 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ {𝑤} ↔ 𝑣 = 𝑤) |
199 | 197, 198 | orbi12i 912 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ ∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∨ 𝑣 ∈ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤)) |
200 | 196, 199 | bitri 274 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ↔ (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤)) |
201 | | nfra1 3144 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) |
202 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠 𝑣 ⊆ 𝑋 |
203 | | rsp 3131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑠 ∈ 𝑡 → 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) |
204 | | eqimss2 3978 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 = (∪
(𝑓‘𝑠) ∪ 𝑠) → (∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋) |
205 | | elssuni 4871 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ ∪ (𝑓‘𝑠)) |
206 | | ssun3 4108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ⊆ ∪ (𝑓‘𝑠) → 𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠)) |
207 | 205, 206 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠)) |
208 | | sstr 3929 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠) ∧ (∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋) → 𝑣 ⊆ 𝑋) |
209 | 208 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ (𝑓‘𝑠) ∪ 𝑠) ⊆ 𝑋 → (𝑣 ⊆ (∪ (𝑓‘𝑠) ∪ 𝑠) → 𝑣 ⊆ 𝑋)) |
210 | 204, 207,
209 | syl2im 40 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 = (∪
(𝑓‘𝑠) ∪ 𝑠) → (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
211 | 203, 210 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (𝑠 ∈ 𝑡 → (𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋))) |
212 | 201, 202,
211 | rexlimd 3250 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑠 ∈
𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠) → (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
213 | 212 | ad2antll 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) → 𝑣 ⊆ 𝑋)) |
214 | | elpwi 4542 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ 𝒫
(fi‘𝑥) → 𝑢 ⊆ (fi‘𝑥)) |
215 | 214 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → 𝑢 ⊆ (fi‘𝑥)) |
216 | 215 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑢 ⊆ (fi‘𝑥)) |
217 | 216, 100 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ∈ (fi‘𝑥)) |
218 | | elssuni 4871 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (fi‘𝑥) → 𝑤 ⊆ ∪
(fi‘𝑥)) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ⊆ ∪
(fi‘𝑥)) |
220 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ (topGen‘(fi‘𝑥)) = ∪
(fi‘𝑥) |
221 | 60, 220 | eqtr2di 2795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ (fi‘𝑥) = ∪ 𝐽) |
222 | 221, 67 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = (topGen‘(fi‘𝑥)) → ∪ (fi‘𝑥) = 𝑋) |
223 | 222 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → ∪ (fi‘𝑥) = 𝑋) |
224 | 223 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪
(fi‘𝑥) = 𝑋) |
225 | 219, 224 | sseqtrd 3961 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑤 ⊆ 𝑋) |
226 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑤 → (𝑣 ⊆ 𝑋 ↔ 𝑤 ⊆ 𝑋)) |
227 | 225, 226 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 = 𝑤 → 𝑣 ⊆ 𝑋)) |
228 | 213, 227 | jaod 856 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ((∃𝑠 ∈ 𝑡 𝑣 ∈ (𝑓‘𝑠) ∨ 𝑣 = 𝑤) → 𝑣 ⊆ 𝑋)) |
229 | 200, 228 | syl5bi 241 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → (𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) → 𝑣 ⊆ 𝑋)) |
230 | 229 | ralrimiv 3102 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∀𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})𝑣 ⊆ 𝑋) |
231 | | unissb 4873 |
. . . . . . . . . . . . . . 15
⊢ (∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑋 ↔ ∀𝑣 ∈ (∪
𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})𝑣 ⊆ 𝑋) |
232 | 230, 231 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ⊆ 𝑋) |
233 | 195, 232 | eqssd 3938 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → 𝑋 = ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
234 | | unieq 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) → ∪ 𝑏 = ∪
(∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) |
235 | 234 | rspceeqv 3575 |
. . . . . . . . . . . . 13
⊢
(((∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪ (∪ 𝑠 ∈ 𝑡 (𝑓‘𝑠) ∪ {𝑤})) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏) |
236 | 117, 233,
235 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) ∧ (𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠))) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏) |
237 | 236 | ex 413 |
. . . . . . . . . . 11
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → ((𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
238 | 237 | exlimdv 1936 |
. . . . . . . . . 10
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∃𝑓(𝑓:𝑡⟶(𝒫 𝑢 ∩ Fin) ∧ ∀𝑠 ∈ 𝑡 𝑋 = (∪ (𝑓‘𝑠) ∪ 𝑠)) → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
239 | 79, 89, 238 | 3syld 60 |
. . . . . . . . 9
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑠 ∈ 𝑡 ∃𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin)𝑋 = ∪ 𝑛 → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
240 | 4, 239 | syl5bi 241 |
. . . . . . . 8
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 → ∃𝑏 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑏)) |
241 | | dfrex2 3170 |
. . . . . . . 8
⊢
(∃𝑏 ∈
(𝒫 𝑢 ∩
Fin)𝑋 = ∪ 𝑏
↔ ¬ ∀𝑏
∈ (𝒫 𝑢 ∩
Fin) ¬ 𝑋 = ∪ 𝑏) |
242 | 240, 241 | syl6ib 250 |
. . . . . . 7
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (¬ ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛 → ¬ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪
𝑏)) |
243 | 242 | con4d 115 |
. . . . . 6
⊢ ((((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) ∧ (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) ∧ 𝑤 ∈ 𝑢)) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)) |
244 | 243 | exp32 421 |
. . . . 5
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → (𝑤 ∈ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))) |
245 | 244 | com24 95 |
. . . 4
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ 𝑎 ⊆ 𝑢)) → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))) |
246 | 245 | exp32 421 |
. . 3
⊢ ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) → (𝑢 ∈ 𝒫 (fi‘𝑥) → (𝑎 ⊆ 𝑢 → (∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏 → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛)))))) |
247 | 246 | imp45 430 |
. 2
⊢ (((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) → (𝑤 ∈ 𝑢 → (((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛))) |
248 | 247 | imp31 418 |
1
⊢
(((((𝐽 =
(topGen‘(fi‘𝑥))
∧ ∀𝑐 ∈
𝒫 𝑥(𝑋 = ∪
𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ∧ 𝑎 ∈ 𝒫 (fi‘𝑥)) ∧ (𝑢 ∈ 𝒫 (fi‘𝑥) ∧ (𝑎 ⊆ 𝑢 ∧ ∀𝑏 ∈ (𝒫 𝑢 ∩ Fin) ¬ 𝑋 = ∪ 𝑏))) ∧ 𝑤 ∈ 𝑢) ∧ ((𝑡 ∈ (𝒫 𝑥 ∩ Fin) ∧ 𝑤 = ∩ 𝑡) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ (𝑥 ∩ 𝑢)))) → ∃𝑠 ∈ 𝑡 ∀𝑛 ∈ (𝒫 (𝑢 ∪ {𝑠}) ∩ Fin) ¬ 𝑋 = ∪ 𝑛) |