| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantrll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| adantrll | ⊢ ((𝜑 ∧ ((𝜏 ∧ 𝜓) ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylanr1 682 | 1 ⊢ ((𝜑 ∧ ((𝜏 ∧ 𝜓) ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: lo1le 15688 nrmmetd 24587 mdslmd3i 32351 fsuppssind 42603 |
| Copyright terms: Public domain | W3C validator |