HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd3i Structured version   Visualization version   GIF version

Theorem mdslmd3i 32094
Description: Modular pair conditions that imply the modular pair property in a sublattice. Lemma 1.5.1 of [MaedaMaeda] p. 2. (Contributed by NM, 23-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd3i (((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) → 𝐷 𝑀 (𝐵𝐶))

Proof of Theorem mdslmd3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdslmd.4 . . . . . . . . . . 11 𝐷C
2 mdslmd.1 . . . . . . . . . . 11 𝐴C
3 chlej2 31273 . . . . . . . . . . . 12 (((𝐷C𝐴C𝑥C ) ∧ 𝐷𝐴) → (𝑥 𝐷) ⊆ (𝑥 𝐴))
43ex 412 . . . . . . . . . . 11 ((𝐷C𝐴C𝑥C ) → (𝐷𝐴 → (𝑥 𝐷) ⊆ (𝑥 𝐴)))
51, 2, 4mp3an12 1447 . . . . . . . . . 10 (𝑥C → (𝐷𝐴 → (𝑥 𝐷) ⊆ (𝑥 𝐴)))
65impcom 407 . . . . . . . . 9 ((𝐷𝐴𝑥C ) → (𝑥 𝐷) ⊆ (𝑥 𝐴))
76ssrind 4230 . . . . . . . 8 ((𝐷𝐴𝑥C ) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
87adantll 711 . . . . . . 7 ((((𝐴𝐶) ⊆ 𝐷𝐷𝐴) ∧ 𝑥C ) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
98adantll 711 . . . . . 6 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
109adantr 480 . . . . 5 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
11 ssin 4225 . . . . . . . 8 ((𝑥𝐵𝑥𝐶) ↔ 𝑥 ⊆ (𝐵𝐶))
12 inass 4214 . . . . . . . . . . . . . 14 (((𝑥 𝐴) ∩ 𝐵) ∩ 𝐶) = ((𝑥 𝐴) ∩ (𝐵𝐶))
13 mdslmd.2 . . . . . . . . . . . . . . . 16 𝐵C
14 mdi 32057 . . . . . . . . . . . . . . . . 17 (((𝐴C𝐵C𝑥C ) ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
152, 14mp3anl1 1451 . . . . . . . . . . . . . . . 16 (((𝐵C𝑥C ) ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
1613, 15mpanl1 697 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
1716ineq1d 4206 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → (((𝑥 𝐴) ∩ 𝐵) ∩ 𝐶) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
1812, 17eqtr3id 2780 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
1918adantrlr 720 . . . . . . . . . . . 12 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥𝐵)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
2019adantrrr 722 . . . . . . . . . . 11 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶))) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
21 mdslmd.3 . . . . . . . . . . . . . . 15 𝐶C
222, 13chincli 31222 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ∈ C
23 mdi 32057 . . . . . . . . . . . . . . . 16 ((((𝐴𝐵) ∈ C𝐶C𝑥C ) ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 ((𝐴𝐵) ∩ 𝐶)))
2422, 23mp3anl1 1451 . . . . . . . . . . . . . . 15 (((𝐶C𝑥C ) ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 ((𝐴𝐵) ∩ 𝐶)))
2521, 24mpanl1 697 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 ((𝐴𝐵) ∩ 𝐶)))
26 inass 4214 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2726oveq2i 7416 . . . . . . . . . . . . . 14 (𝑥 ((𝐴𝐵) ∩ 𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶)))
2825, 27eqtrdi 2782 . . . . . . . . . . . . 13 ((𝑥C ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
2928adantrll 719 . . . . . . . . . . . 12 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3029adantrrl 721 . . . . . . . . . . 11 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶))) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3120, 30eqtrd 2766 . . . . . . . . . 10 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶))) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3231ancoms 458 . . . . . . . . 9 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3332an32s 649 . . . . . . . 8 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥C ) ∧ (𝑥𝐵𝑥𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3411, 33sylan2br 594 . . . . . . 7 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3534adantllr 716 . . . . . 6 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
36 inass 4214 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐶)))
37 in12 4215 . . . . . . . . . . . . . 14 (𝐶 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐶𝐶))
38 inidm 4213 . . . . . . . . . . . . . . 15 (𝐶𝐶) = 𝐶
3938ineq2i 4204 . . . . . . . . . . . . . 14 (𝐵 ∩ (𝐶𝐶)) = (𝐵𝐶)
4037, 39eqtri 2754 . . . . . . . . . . . . 13 (𝐶 ∩ (𝐵𝐶)) = (𝐵𝐶)
4140ineq2i 4204 . . . . . . . . . . . 12 (𝐴 ∩ (𝐶 ∩ (𝐵𝐶))) = (𝐴 ∩ (𝐵𝐶))
4236, 41eqtr2i 2755 . . . . . . . . . . 11 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐶) ∩ (𝐵𝐶))
43 ssrin 4228 . . . . . . . . . . 11 ((𝐴𝐶) ⊆ 𝐷 → ((𝐴𝐶) ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)))
4442, 43eqsstrid 4025 . . . . . . . . . 10 ((𝐴𝐶) ⊆ 𝐷 → (𝐴 ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)))
45 ssrin 4228 . . . . . . . . . 10 (𝐷𝐴 → (𝐷 ∩ (𝐵𝐶)) ⊆ (𝐴 ∩ (𝐵𝐶)))
4644, 45anim12i 612 . . . . . . . . 9 (((𝐴𝐶) ⊆ 𝐷𝐷𝐴) → ((𝐴 ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)) ∧ (𝐷 ∩ (𝐵𝐶)) ⊆ (𝐴 ∩ (𝐵𝐶))))
47 eqss 3992 . . . . . . . . 9 ((𝐴 ∩ (𝐵𝐶)) = (𝐷 ∩ (𝐵𝐶)) ↔ ((𝐴 ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)) ∧ (𝐷 ∩ (𝐵𝐶)) ⊆ (𝐴 ∩ (𝐵𝐶))))
4846, 47sylibr 233 . . . . . . . 8 (((𝐴𝐶) ⊆ 𝐷𝐷𝐴) → (𝐴 ∩ (𝐵𝐶)) = (𝐷 ∩ (𝐵𝐶)))
4948oveq2d 7421 . . . . . . 7 (((𝐴𝐶) ⊆ 𝐷𝐷𝐴) → (𝑥 (𝐴 ∩ (𝐵𝐶))) = (𝑥 (𝐷 ∩ (𝐵𝐶))))
5049ad3antlr 728 . . . . . 6 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → (𝑥 (𝐴 ∩ (𝐵𝐶))) = (𝑥 (𝐷 ∩ (𝐵𝐶))))
5135, 50eqtrd 2766 . . . . 5 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐷 ∩ (𝐵𝐶))))
5210, 51sseqtrd 4017 . . . 4 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶))))
5352ex 412 . . 3 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) → (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶)))))
5453ralrimiva 3140 . 2 (((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) → ∀𝑥C (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶)))))
5513, 21chincli 31222 . . 3 (𝐵𝐶) ∈ C
56 mdbr2 32058 . . 3 ((𝐷C ∧ (𝐵𝐶) ∈ C ) → (𝐷 𝑀 (𝐵𝐶) ↔ ∀𝑥C (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶))))))
571, 55, 56mp2an 689 . 2 (𝐷 𝑀 (𝐵𝐶) ↔ ∀𝑥C (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶)))))
5854, 57sylibr 233 1 (((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) → 𝐷 𝑀 (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  cin 3942  wss 3943   class class class wbr 5141  (class class class)co 7405   C cch 30691   chj 30695   𝑀 cmd 30728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30761  ax-hfvadd 30762  ax-hvcom 30763  ax-hvass 30764  ax-hv0cl 30765  ax-hvaddid 30766  ax-hfvmul 30767  ax-hvmulid 30768  ax-hvmulass 30769  ax-hvdistr1 30770  ax-hvdistr2 30771  ax-hvmul0 30772  ax-hfi 30841  ax-his1 30844  ax-his2 30845  ax-his3 30846  ax-his4 30847  ax-hcompl 30964
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-omul 8472  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-rlim 15439  df-sum 15639  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-cn 23086  df-cnp 23087  df-lm 23088  df-haus 23174  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-xms 24181  df-ms 24182  df-tms 24183  df-cfil 25138  df-cau 25139  df-cmet 25140  df-grpo 30255  df-gid 30256  df-ginv 30257  df-gdiv 30258  df-ablo 30307  df-vc 30321  df-nv 30354  df-va 30357  df-ba 30358  df-sm 30359  df-0v 30360  df-vs 30361  df-nmcv 30362  df-ims 30363  df-dip 30463  df-ssp 30484  df-ph 30575  df-cbn 30625  df-hnorm 30730  df-hba 30731  df-hvsub 30733  df-hlim 30734  df-hcau 30735  df-sh 30969  df-ch 30983  df-oc 31014  df-ch0 31015  df-shs 31070  df-chj 31072  df-md 32042
This theorem is referenced by:  mdslmd4i  32095
  Copyright terms: Public domain W3C validator