HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd3i Structured version   Visualization version   GIF version

Theorem mdslmd3i 32268
Description: Modular pair conditions that imply the modular pair property in a sublattice. Lemma 1.5.1 of [MaedaMaeda] p. 2. (Contributed by NM, 23-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd3i (((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) → 𝐷 𝑀 (𝐵𝐶))

Proof of Theorem mdslmd3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mdslmd.4 . . . . . . . . . . 11 𝐷C
2 mdslmd.1 . . . . . . . . . . 11 𝐴C
3 chlej2 31447 . . . . . . . . . . . 12 (((𝐷C𝐴C𝑥C ) ∧ 𝐷𝐴) → (𝑥 𝐷) ⊆ (𝑥 𝐴))
43ex 412 . . . . . . . . . . 11 ((𝐷C𝐴C𝑥C ) → (𝐷𝐴 → (𝑥 𝐷) ⊆ (𝑥 𝐴)))
51, 2, 4mp3an12 1453 . . . . . . . . . 10 (𝑥C → (𝐷𝐴 → (𝑥 𝐷) ⊆ (𝑥 𝐴)))
65impcom 407 . . . . . . . . 9 ((𝐷𝐴𝑥C ) → (𝑥 𝐷) ⊆ (𝑥 𝐴))
76ssrind 4210 . . . . . . . 8 ((𝐷𝐴𝑥C ) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
87adantll 714 . . . . . . 7 ((((𝐴𝐶) ⊆ 𝐷𝐷𝐴) ∧ 𝑥C ) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
98adantll 714 . . . . . 6 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
109adantr 480 . . . . 5 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ ((𝑥 𝐴) ∩ (𝐵𝐶)))
11 ssin 4205 . . . . . . . 8 ((𝑥𝐵𝑥𝐶) ↔ 𝑥 ⊆ (𝐵𝐶))
12 inass 4194 . . . . . . . . . . . . . 14 (((𝑥 𝐴) ∩ 𝐵) ∩ 𝐶) = ((𝑥 𝐴) ∩ (𝐵𝐶))
13 mdslmd.2 . . . . . . . . . . . . . . . 16 𝐵C
14 mdi 32231 . . . . . . . . . . . . . . . . 17 (((𝐴C𝐵C𝑥C ) ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
152, 14mp3anl1 1457 . . . . . . . . . . . . . . . 16 (((𝐵C𝑥C ) ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
1613, 15mpanl1 700 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))
1716ineq1d 4185 . . . . . . . . . . . . . 14 ((𝑥C ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → (((𝑥 𝐴) ∩ 𝐵) ∩ 𝐶) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
1812, 17eqtr3id 2779 . . . . . . . . . . . . 13 ((𝑥C ∧ (𝐴 𝑀 𝐵𝑥𝐵)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
1918adantrlr 723 . . . . . . . . . . . 12 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥𝐵)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
2019adantrrr 725 . . . . . . . . . . 11 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶))) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = ((𝑥 (𝐴𝐵)) ∩ 𝐶))
21 mdslmd.3 . . . . . . . . . . . . . . 15 𝐶C
222, 13chincli 31396 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ∈ C
23 mdi 32231 . . . . . . . . . . . . . . . 16 ((((𝐴𝐵) ∈ C𝐶C𝑥C ) ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 ((𝐴𝐵) ∩ 𝐶)))
2422, 23mp3anl1 1457 . . . . . . . . . . . . . . 15 (((𝐶C𝑥C ) ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 ((𝐴𝐵) ∩ 𝐶)))
2521, 24mpanl1 700 . . . . . . . . . . . . . 14 ((𝑥C ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 ((𝐴𝐵) ∩ 𝐶)))
26 inass 4194 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2726oveq2i 7401 . . . . . . . . . . . . . 14 (𝑥 ((𝐴𝐵) ∩ 𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶)))
2825, 27eqtrdi 2781 . . . . . . . . . . . . 13 ((𝑥C ∧ ((𝐴𝐵) 𝑀 𝐶𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
2928adantrll 722 . . . . . . . . . . . 12 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥𝐶)) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3029adantrrl 724 . . . . . . . . . . 11 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶))) → ((𝑥 (𝐴𝐵)) ∩ 𝐶) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3120, 30eqtrd 2765 . . . . . . . . . 10 ((𝑥C ∧ ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶))) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3231ancoms 458 . . . . . . . . 9 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3332an32s 652 . . . . . . . 8 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥C ) ∧ (𝑥𝐵𝑥𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3411, 33sylan2br 595 . . . . . . 7 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
3534adantllr 719 . . . . . 6 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐴 ∩ (𝐵𝐶))))
36 inass 4194 . . . . . . . . . . . 12 ((𝐴𝐶) ∩ (𝐵𝐶)) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐶)))
37 in12 4195 . . . . . . . . . . . . . 14 (𝐶 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐶𝐶))
38 inidm 4193 . . . . . . . . . . . . . . 15 (𝐶𝐶) = 𝐶
3938ineq2i 4183 . . . . . . . . . . . . . 14 (𝐵 ∩ (𝐶𝐶)) = (𝐵𝐶)
4037, 39eqtri 2753 . . . . . . . . . . . . 13 (𝐶 ∩ (𝐵𝐶)) = (𝐵𝐶)
4140ineq2i 4183 . . . . . . . . . . . 12 (𝐴 ∩ (𝐶 ∩ (𝐵𝐶))) = (𝐴 ∩ (𝐵𝐶))
4236, 41eqtr2i 2754 . . . . . . . . . . 11 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐶) ∩ (𝐵𝐶))
43 ssrin 4208 . . . . . . . . . . 11 ((𝐴𝐶) ⊆ 𝐷 → ((𝐴𝐶) ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)))
4442, 43eqsstrid 3988 . . . . . . . . . 10 ((𝐴𝐶) ⊆ 𝐷 → (𝐴 ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)))
45 ssrin 4208 . . . . . . . . . 10 (𝐷𝐴 → (𝐷 ∩ (𝐵𝐶)) ⊆ (𝐴 ∩ (𝐵𝐶)))
4644, 45anim12i 613 . . . . . . . . 9 (((𝐴𝐶) ⊆ 𝐷𝐷𝐴) → ((𝐴 ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)) ∧ (𝐷 ∩ (𝐵𝐶)) ⊆ (𝐴 ∩ (𝐵𝐶))))
47 eqss 3965 . . . . . . . . 9 ((𝐴 ∩ (𝐵𝐶)) = (𝐷 ∩ (𝐵𝐶)) ↔ ((𝐴 ∩ (𝐵𝐶)) ⊆ (𝐷 ∩ (𝐵𝐶)) ∧ (𝐷 ∩ (𝐵𝐶)) ⊆ (𝐴 ∩ (𝐵𝐶))))
4846, 47sylibr 234 . . . . . . . 8 (((𝐴𝐶) ⊆ 𝐷𝐷𝐴) → (𝐴 ∩ (𝐵𝐶)) = (𝐷 ∩ (𝐵𝐶)))
4948oveq2d 7406 . . . . . . 7 (((𝐴𝐶) ⊆ 𝐷𝐷𝐴) → (𝑥 (𝐴 ∩ (𝐵𝐶))) = (𝑥 (𝐷 ∩ (𝐵𝐶))))
5049ad3antlr 731 . . . . . 6 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → (𝑥 (𝐴 ∩ (𝐵𝐶))) = (𝑥 (𝐷 ∩ (𝐵𝐶))))
5135, 50eqtrd 2765 . . . . 5 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐴) ∩ (𝐵𝐶)) = (𝑥 (𝐷 ∩ (𝐵𝐶))))
5210, 51sseqtrd 3986 . . . 4 (((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) ∧ 𝑥 ⊆ (𝐵𝐶)) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶))))
5352ex 412 . . 3 ((((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) ∧ 𝑥C ) → (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶)))))
5453ralrimiva 3126 . 2 (((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) → ∀𝑥C (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶)))))
5513, 21chincli 31396 . . 3 (𝐵𝐶) ∈ C
56 mdbr2 32232 . . 3 ((𝐷C ∧ (𝐵𝐶) ∈ C ) → (𝐷 𝑀 (𝐵𝐶) ↔ ∀𝑥C (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶))))))
571, 55, 56mp2an 692 . 2 (𝐷 𝑀 (𝐵𝐶) ↔ ∀𝑥C (𝑥 ⊆ (𝐵𝐶) → ((𝑥 𝐷) ∩ (𝐵𝐶)) ⊆ (𝑥 (𝐷 ∩ (𝐵𝐶)))))
5854, 57sylibr 234 1 (((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) 𝑀 𝐶) ∧ ((𝐴𝐶) ⊆ 𝐷𝐷𝐴)) → 𝐷 𝑀 (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917   class class class wbr 5110  (class class class)co 7390   C cch 30865   chj 30869   𝑀 cmd 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-ssp 30658  df-ph 30749  df-cbn 30799  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-chj 31246  df-md 32216
This theorem is referenced by:  mdslmd4i  32269
  Copyright terms: Public domain W3C validator