| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: disjxiun 5092 2ndconst 8041 oelim 8459 odi 8504 marypha1lem 9342 dfac12lem2 10058 infunsdom 10126 isf34lem4 10290 distrlem1pr 10938 lcmgcdlem 16535 lcmdvds 16537 drsdirfi 18229 isacs3lem 18466 conjnmzb 19150 psgndif 21527 frlmsslsp 21721 metss2lem 24415 nghmcn 24649 bndth 24873 itg2monolem1 25667 dvmptfsum 25895 ply1divex 26058 itgulm 26333 rpvmasumlem 27414 dchrmusum2 27421 dchrisum0lem2 27445 dchrisum0lem3 27446 mulog2sumlem2 27462 pntibndlem3 27519 wwlksubclwwlk 30020 blocni 30767 superpos 32316 chirredlem2 32353 eulerpartlemgvv 34343 ballotlemfc0 34460 ballotlemfcc 34461 bj-finsumval0 37258 pibt2 37390 fin2solem 37585 matunitlindflem1 37595 poimirlem28 37627 heicant 37634 ftc1anclem6 37677 ftc1anc 37680 fdc 37724 incsequz 37727 ismtyres 37787 isdrngo2 37937 rngohomco 37953 keridl 38011 linepsubN 39731 pmapsub 39747 fsuppind 42563 mhpind 42567 mzpcompact2lem 42724 pellex 42808 monotuz 42914 unxpwdom3 43068 cantnfresb 43297 dssmapnvod 43993 radcnvrat 44287 fprodexp 45576 fprodabs2 45577 climxrrelem 45731 dvnprodlem1 45928 stoweidlem34 46016 fourierdlem42 46131 elaa2 46216 sge0iunmptlemfi 46395 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |