Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 679 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: disjxiun 5094 2ndconst 8014 oelim 8440 odi 8486 marypha1lem 9295 dfac12lem2 10006 infunsdom 10076 isf34lem4 10239 distrlem1pr 10887 lcmgcdlem 16409 lcmdvds 16411 drsdirfi 18121 isacs3lem 18358 conjnmzb 18966 psgndif 20913 frlmsslsp 21109 metss2lem 23773 nghmcn 24015 bndth 24227 itg2monolem1 25021 dvmptfsum 25245 ply1divex 25407 itgulm 25673 rpvmasumlem 26741 dchrmusum2 26748 dchrisum0lem2 26772 dchrisum0lem3 26773 mulog2sumlem2 26789 pntibndlem3 26846 wwlksubclwwlk 28710 blocni 29455 superpos 31004 chirredlem2 31041 eulerpartlemgvv 32641 ballotlemfc0 32757 ballotlemfcc 32758 bj-finsumval0 35610 pibt2 35742 fin2solem 35917 matunitlindflem1 35927 poimirlem28 35959 heicant 35966 ftc1anclem6 36009 ftc1anc 36012 fdc 36057 incsequz 36060 ismtyres 36120 isdrngo2 36270 rngohomco 36286 keridl 36344 linepsubN 38069 pmapsub 38085 fsuppind 40588 mhpind 40592 mzpcompact2lem 40884 pellex 40968 monotuz 41075 unxpwdom3 41232 dssmapnvod 41999 radcnvrat 42303 fprodexp 43521 fprodabs2 43522 climxrrelem 43676 dvnprodlem1 43873 stoweidlem34 43961 fourierdlem42 44076 elaa2 44161 sge0iunmptlemfi 44338 aacllem 46921 |
Copyright terms: Public domain | W3C validator |