| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: disjxiun 5088 2ndconst 8031 oelim 8449 odi 8494 marypha1lem 9317 dfac12lem2 10033 infunsdom 10101 isf34lem4 10265 distrlem1pr 10913 lcmgcdlem 16514 lcmdvds 16516 drsdirfi 18208 isacs3lem 18445 conjnmzb 19163 psgndif 21537 frlmsslsp 21731 metss2lem 24424 nghmcn 24658 bndth 24882 itg2monolem1 25676 dvmptfsum 25904 ply1divex 26067 itgulm 26342 rpvmasumlem 27423 dchrmusum2 27430 dchrisum0lem2 27454 dchrisum0lem3 27455 mulog2sumlem2 27471 pntibndlem3 27528 wwlksubclwwlk 30033 blocni 30780 superpos 32329 chirredlem2 32366 eulerpartlemgvv 34384 ballotlemfc0 34501 ballotlemfcc 34502 bj-finsumval0 37318 pibt2 37450 fin2solem 37645 matunitlindflem1 37655 poimirlem28 37687 heicant 37694 ftc1anclem6 37737 ftc1anc 37740 fdc 37784 incsequz 37787 ismtyres 37847 isdrngo2 37997 rngohomco 38013 keridl 38071 linepsubN 39790 pmapsub 39806 fsuppind 42622 mhpind 42626 mzpcompact2lem 42783 pellex 42867 monotuz 42973 unxpwdom3 43127 cantnfresb 43356 dssmapnvod 44052 radcnvrat 44346 fprodexp 45633 fprodabs2 45634 climxrrelem 45786 dvnprodlem1 45983 stoweidlem34 46071 fourierdlem42 46186 elaa2 46271 sge0iunmptlemfi 46450 aacllem 49832 |
| Copyright terms: Public domain | W3C validator |