| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: disjxiun 5121 2ndconst 8105 oelim 8551 odi 8596 marypha1lem 9450 dfac12lem2 10164 infunsdom 10232 isf34lem4 10396 distrlem1pr 11044 lcmgcdlem 16630 lcmdvds 16632 drsdirfi 18322 isacs3lem 18557 conjnmzb 19241 psgndif 21567 frlmsslsp 21761 metss2lem 24455 nghmcn 24689 bndth 24913 itg2monolem1 25708 dvmptfsum 25936 ply1divex 26099 itgulm 26374 rpvmasumlem 27455 dchrmusum2 27462 dchrisum0lem2 27486 dchrisum0lem3 27487 mulog2sumlem2 27503 pntibndlem3 27560 wwlksubclwwlk 30044 blocni 30791 superpos 32340 chirredlem2 32377 eulerpartlemgvv 34413 ballotlemfc0 34530 ballotlemfcc 34531 bj-finsumval0 37308 pibt2 37440 fin2solem 37635 matunitlindflem1 37645 poimirlem28 37677 heicant 37684 ftc1anclem6 37727 ftc1anc 37730 fdc 37774 incsequz 37777 ismtyres 37837 isdrngo2 37987 rngohomco 38003 keridl 38061 linepsubN 39776 pmapsub 39792 fsuppind 42588 mhpind 42592 mzpcompact2lem 42749 pellex 42833 monotuz 42940 unxpwdom3 43094 cantnfresb 43323 dssmapnvod 44019 radcnvrat 44313 fprodexp 45603 fprodabs2 45604 climxrrelem 45758 dvnprodlem1 45955 stoweidlem34 46043 fourierdlem42 46158 elaa2 46243 sge0iunmptlemfi 46422 aacllem 49645 |
| Copyright terms: Public domain | W3C validator |