![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 680 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: disjxiun 5163 2ndconst 8142 oelim 8590 odi 8635 marypha1lem 9502 dfac12lem2 10214 infunsdom 10282 isf34lem4 10446 distrlem1pr 11094 lcmgcdlem 16653 lcmdvds 16655 drsdirfi 18375 isacs3lem 18612 conjnmzb 19293 psgndif 21643 frlmsslsp 21839 metss2lem 24545 nghmcn 24787 bndth 25009 itg2monolem1 25805 dvmptfsum 26033 ply1divex 26196 itgulm 26469 rpvmasumlem 27549 dchrmusum2 27556 dchrisum0lem2 27580 dchrisum0lem3 27581 mulog2sumlem2 27597 pntibndlem3 27654 wwlksubclwwlk 30090 blocni 30837 superpos 32386 chirredlem2 32423 eulerpartlemgvv 34341 ballotlemfc0 34457 ballotlemfcc 34458 bj-finsumval0 37251 pibt2 37383 fin2solem 37566 matunitlindflem1 37576 poimirlem28 37608 heicant 37615 ftc1anclem6 37658 ftc1anc 37661 fdc 37705 incsequz 37708 ismtyres 37768 isdrngo2 37918 rngohomco 37934 keridl 37992 linepsubN 39709 pmapsub 39725 fsuppind 42545 mhpind 42549 mzpcompact2lem 42707 pellex 42791 monotuz 42898 unxpwdom3 43052 cantnfresb 43286 dssmapnvod 43982 radcnvrat 44283 fprodexp 45515 fprodabs2 45516 climxrrelem 45670 dvnprodlem1 45867 stoweidlem34 45955 fourierdlem42 46070 elaa2 46155 sge0iunmptlemfi 46334 aacllem 48895 |
Copyright terms: Public domain | W3C validator |