![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: disjxiun 5145 2ndconst 8125 oelim 8571 odi 8616 marypha1lem 9471 dfac12lem2 10183 infunsdom 10251 isf34lem4 10415 distrlem1pr 11063 lcmgcdlem 16640 lcmdvds 16642 drsdirfi 18363 isacs3lem 18600 conjnmzb 19284 psgndif 21638 frlmsslsp 21834 metss2lem 24540 nghmcn 24782 bndth 25004 itg2monolem1 25800 dvmptfsum 26028 ply1divex 26191 itgulm 26466 rpvmasumlem 27546 dchrmusum2 27553 dchrisum0lem2 27577 dchrisum0lem3 27578 mulog2sumlem2 27594 pntibndlem3 27651 wwlksubclwwlk 30087 blocni 30834 superpos 32383 chirredlem2 32420 eulerpartlemgvv 34358 ballotlemfc0 34474 ballotlemfcc 34475 bj-finsumval0 37268 pibt2 37400 fin2solem 37593 matunitlindflem1 37603 poimirlem28 37635 heicant 37642 ftc1anclem6 37685 ftc1anc 37688 fdc 37732 incsequz 37735 ismtyres 37795 isdrngo2 37945 rngohomco 37961 keridl 38019 linepsubN 39735 pmapsub 39751 fsuppind 42577 mhpind 42581 mzpcompact2lem 42739 pellex 42823 monotuz 42930 unxpwdom3 43084 cantnfresb 43314 dssmapnvod 44010 radcnvrat 44310 fprodexp 45550 fprodabs2 45551 climxrrelem 45705 dvnprodlem1 45902 stoweidlem34 45990 fourierdlem42 46105 elaa2 46190 sge0iunmptlemfi 46369 aacllem 49032 |
Copyright terms: Public domain | W3C validator |