Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 677 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: disjxiun 5067 2ndconst 7912 oelim 8326 odi 8372 marypha1lem 9122 dfac12lem2 9831 infunsdom 9901 isf34lem4 10064 distrlem1pr 10712 lcmgcdlem 16239 lcmdvds 16241 drsdirfi 17938 isacs3lem 18175 conjnmzb 18784 psgndif 20719 frlmsslsp 20913 metss2lem 23573 nghmcn 23815 bndth 24027 itg2monolem1 24820 dvmptfsum 25044 ply1divex 25206 itgulm 25472 rpvmasumlem 26540 dchrmusum2 26547 dchrisum0lem2 26571 dchrisum0lem3 26572 mulog2sumlem2 26588 pntibndlem3 26645 wwlksubclwwlk 28323 blocni 29068 superpos 30617 chirredlem2 30654 eulerpartlemgvv 32243 ballotlemfc0 32359 ballotlemfcc 32360 bj-finsumval0 35383 pibt2 35515 fin2solem 35690 matunitlindflem1 35700 poimirlem28 35732 heicant 35739 ftc1anclem6 35782 ftc1anc 35785 fdc 35830 incsequz 35833 ismtyres 35893 isdrngo2 36043 rngohomco 36059 keridl 36117 linepsubN 37693 pmapsub 37709 fsuppind 40202 mhpind 40206 mzpcompact2lem 40489 pellex 40573 monotuz 40679 unxpwdom3 40836 dssmapnvod 41517 radcnvrat 41821 fprodexp 43025 fprodabs2 43026 climxrrelem 43180 dvnprodlem1 43377 stoweidlem34 43465 fourierdlem42 43580 elaa2 43665 sge0iunmptlemfi 43841 aacllem 46391 |
Copyright terms: Public domain | W3C validator |