| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: disjxiun 5107 2ndconst 8083 oelim 8501 odi 8546 marypha1lem 9391 dfac12lem2 10105 infunsdom 10173 isf34lem4 10337 distrlem1pr 10985 lcmgcdlem 16583 lcmdvds 16585 drsdirfi 18273 isacs3lem 18508 conjnmzb 19192 psgndif 21518 frlmsslsp 21712 metss2lem 24406 nghmcn 24640 bndth 24864 itg2monolem1 25658 dvmptfsum 25886 ply1divex 26049 itgulm 26324 rpvmasumlem 27405 dchrmusum2 27412 dchrisum0lem2 27436 dchrisum0lem3 27437 mulog2sumlem2 27453 pntibndlem3 27510 wwlksubclwwlk 29994 blocni 30741 superpos 32290 chirredlem2 32327 eulerpartlemgvv 34374 ballotlemfc0 34491 ballotlemfcc 34492 bj-finsumval0 37280 pibt2 37412 fin2solem 37607 matunitlindflem1 37617 poimirlem28 37649 heicant 37656 ftc1anclem6 37699 ftc1anc 37702 fdc 37746 incsequz 37749 ismtyres 37809 isdrngo2 37959 rngohomco 37975 keridl 38033 linepsubN 39753 pmapsub 39769 fsuppind 42585 mhpind 42589 mzpcompact2lem 42746 pellex 42830 monotuz 42937 unxpwdom3 43091 cantnfresb 43320 dssmapnvod 44016 radcnvrat 44310 fprodexp 45599 fprodabs2 45600 climxrrelem 45754 dvnprodlem1 45951 stoweidlem34 46039 fourierdlem42 46154 elaa2 46239 sge0iunmptlemfi 46418 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |