| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: disjxiun 5090 2ndconst 8037 oelim 8455 odi 8500 marypha1lem 9324 dfac12lem2 10043 infunsdom 10111 isf34lem4 10275 distrlem1pr 10923 lcmgcdlem 16519 lcmdvds 16521 drsdirfi 18213 isacs3lem 18450 conjnmzb 19167 psgndif 21541 frlmsslsp 21735 metss2lem 24427 nghmcn 24661 bndth 24885 itg2monolem1 25679 dvmptfsum 25907 ply1divex 26070 itgulm 26345 rpvmasumlem 27426 dchrmusum2 27433 dchrisum0lem2 27457 dchrisum0lem3 27458 mulog2sumlem2 27474 pntibndlem3 27531 wwlksubclwwlk 30040 blocni 30787 superpos 32336 chirredlem2 32373 eulerpartlemgvv 34410 ballotlemfc0 34527 ballotlemfcc 34528 bj-finsumval0 37350 pibt2 37482 fin2solem 37666 matunitlindflem1 37676 poimirlem28 37708 heicant 37715 ftc1anclem6 37758 ftc1anc 37761 fdc 37805 incsequz 37808 ismtyres 37868 isdrngo2 38018 rngohomco 38034 keridl 38092 linepsubN 39871 pmapsub 39887 fsuppind 42708 mhpind 42712 mzpcompact2lem 42868 pellex 42952 monotuz 43058 unxpwdom3 43212 cantnfresb 43441 dssmapnvod 44137 radcnvrat 44431 fprodexp 45718 fprodabs2 45719 climxrrelem 45871 dvnprodlem1 46068 stoweidlem34 46156 fourierdlem42 46271 elaa2 46356 sge0iunmptlemfi 46535 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |