![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 679 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: disjxiun 5144 2ndconst 8083 oelim 8530 odi 8575 marypha1lem 9424 dfac12lem2 10135 infunsdom 10205 isf34lem4 10368 distrlem1pr 11016 lcmgcdlem 16539 lcmdvds 16541 drsdirfi 18254 isacs3lem 18491 conjnmzb 19121 psgndif 21146 frlmsslsp 21342 metss2lem 24011 nghmcn 24253 bndth 24465 itg2monolem1 25259 dvmptfsum 25483 ply1divex 25645 itgulm 25911 rpvmasumlem 26979 dchrmusum2 26986 dchrisum0lem2 27010 dchrisum0lem3 27011 mulog2sumlem2 27027 pntibndlem3 27084 wwlksubclwwlk 29300 blocni 30045 superpos 31594 chirredlem2 31631 eulerpartlemgvv 33363 ballotlemfc0 33479 ballotlemfcc 33480 bj-finsumval0 36154 pibt2 36286 fin2solem 36462 matunitlindflem1 36472 poimirlem28 36504 heicant 36511 ftc1anclem6 36554 ftc1anc 36557 fdc 36601 incsequz 36604 ismtyres 36664 isdrngo2 36814 rngohomco 36830 keridl 36888 linepsubN 38611 pmapsub 38627 fsuppind 41159 mhpind 41163 mzpcompact2lem 41474 pellex 41558 monotuz 41665 unxpwdom3 41822 cantnfresb 42059 dssmapnvod 42756 radcnvrat 43058 fprodexp 44296 fprodabs2 44297 climxrrelem 44451 dvnprodlem1 44648 stoweidlem34 44736 fourierdlem42 44851 elaa2 44936 sge0iunmptlemfi 45115 aacllem 47801 |
Copyright terms: Public domain | W3C validator |