Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 678 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: disjxiun 5071 2ndconst 7941 oelim 8364 odi 8410 marypha1lem 9192 dfac12lem2 9900 infunsdom 9970 isf34lem4 10133 distrlem1pr 10781 lcmgcdlem 16311 lcmdvds 16313 drsdirfi 18023 isacs3lem 18260 conjnmzb 18869 psgndif 20807 frlmsslsp 21003 metss2lem 23667 nghmcn 23909 bndth 24121 itg2monolem1 24915 dvmptfsum 25139 ply1divex 25301 itgulm 25567 rpvmasumlem 26635 dchrmusum2 26642 dchrisum0lem2 26666 dchrisum0lem3 26667 mulog2sumlem2 26683 pntibndlem3 26740 wwlksubclwwlk 28422 blocni 29167 superpos 30716 chirredlem2 30753 eulerpartlemgvv 32343 ballotlemfc0 32459 ballotlemfcc 32460 bj-finsumval0 35456 pibt2 35588 fin2solem 35763 matunitlindflem1 35773 poimirlem28 35805 heicant 35812 ftc1anclem6 35855 ftc1anc 35858 fdc 35903 incsequz 35906 ismtyres 35966 isdrngo2 36116 rngohomco 36132 keridl 36190 linepsubN 37766 pmapsub 37782 fsuppind 40279 mhpind 40283 mzpcompact2lem 40573 pellex 40657 monotuz 40763 unxpwdom3 40920 dssmapnvod 41628 radcnvrat 41932 fprodexp 43135 fprodabs2 43136 climxrrelem 43290 dvnprodlem1 43487 stoweidlem34 43575 fourierdlem42 43690 elaa2 43775 sge0iunmptlemfi 43951 aacllem 46505 |
Copyright terms: Public domain | W3C validator |