| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: disjxiun 5104 2ndconst 8080 oelim 8498 odi 8543 marypha1lem 9384 dfac12lem2 10098 infunsdom 10166 isf34lem4 10330 distrlem1pr 10978 lcmgcdlem 16576 lcmdvds 16578 drsdirfi 18266 isacs3lem 18501 conjnmzb 19185 psgndif 21511 frlmsslsp 21705 metss2lem 24399 nghmcn 24633 bndth 24857 itg2monolem1 25651 dvmptfsum 25879 ply1divex 26042 itgulm 26317 rpvmasumlem 27398 dchrmusum2 27405 dchrisum0lem2 27429 dchrisum0lem3 27430 mulog2sumlem2 27446 pntibndlem3 27503 wwlksubclwwlk 29987 blocni 30734 superpos 32283 chirredlem2 32320 eulerpartlemgvv 34367 ballotlemfc0 34484 ballotlemfcc 34485 bj-finsumval0 37273 pibt2 37405 fin2solem 37600 matunitlindflem1 37610 poimirlem28 37642 heicant 37649 ftc1anclem6 37692 ftc1anc 37695 fdc 37739 incsequz 37742 ismtyres 37802 isdrngo2 37952 rngohomco 37968 keridl 38026 linepsubN 39746 pmapsub 39762 fsuppind 42578 mhpind 42582 mzpcompact2lem 42739 pellex 42823 monotuz 42930 unxpwdom3 43084 cantnfresb 43313 dssmapnvod 44009 radcnvrat 44303 fprodexp 45592 fprodabs2 45593 climxrrelem 45747 dvnprodlem1 45944 stoweidlem34 46032 fourierdlem42 46147 elaa2 46232 sge0iunmptlemfi 46411 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |