![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 677 | 1 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜏)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: disjxiun 5144 2ndconst 8089 oelim 8536 odi 8581 marypha1lem 9430 dfac12lem2 10141 infunsdom 10211 isf34lem4 10374 distrlem1pr 11022 lcmgcdlem 16547 lcmdvds 16549 drsdirfi 18262 isacs3lem 18499 conjnmzb 19167 psgndif 21374 frlmsslsp 21570 metss2lem 24240 nghmcn 24482 bndth 24704 itg2monolem1 25500 dvmptfsum 25727 ply1divex 25889 itgulm 26156 rpvmasumlem 27226 dchrmusum2 27233 dchrisum0lem2 27257 dchrisum0lem3 27258 mulog2sumlem2 27274 pntibndlem3 27331 wwlksubclwwlk 29578 blocni 30325 superpos 31874 chirredlem2 31911 eulerpartlemgvv 33673 ballotlemfc0 33789 ballotlemfcc 33790 bj-finsumval0 36469 pibt2 36601 fin2solem 36777 matunitlindflem1 36787 poimirlem28 36819 heicant 36826 ftc1anclem6 36869 ftc1anc 36872 fdc 36916 incsequz 36919 ismtyres 36979 isdrngo2 37129 rngohomco 37145 keridl 37203 linepsubN 38926 pmapsub 38942 fsuppind 41464 mhpind 41468 mzpcompact2lem 41791 pellex 41875 monotuz 41982 unxpwdom3 42139 cantnfresb 42376 dssmapnvod 43073 radcnvrat 43375 fprodexp 44608 fprodabs2 44609 climxrrelem 44763 dvnprodlem1 44960 stoweidlem34 45048 fourierdlem42 45163 elaa2 45248 sge0iunmptlemfi 45427 aacllem 47935 |
Copyright terms: Public domain | W3C validator |