MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrlr Structured version   Visualization version   GIF version

Theorem adantrlr 722
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrlr ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)

Proof of Theorem adantrlr
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr1 681 1 ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  smoord  8421  addsrmo  11142  mulsrmo  11143  lediv12a  12188  nrmmetd  24608  pntrmax  27626  ablo4  30582  mdslmd3i  32364  atom1d  32385  fsumiunle  32833  esumiun  34058  poimirlem28  37608  fdc  37705  incsequz  37708  crngm4  37963  ps-2  39435  aacllem  48895
  Copyright terms: Public domain W3C validator