![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantrlr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrlr | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜏) ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr1 681 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜏) ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: smoord 8365 addsrmo 11068 mulsrmo 11069 lediv12a 12107 nrmmetd 24083 pntrmax 27067 ablo4 29803 mdslmd3i 31585 atom1d 31606 fsumiunle 32035 esumiun 33092 poimirlem28 36516 fdc 36613 incsequz 36616 crngm4 36871 ps-2 38349 aacllem 47848 |
Copyright terms: Public domain | W3C validator |