| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantrlr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| adantrlr | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜏) ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜓 ∧ 𝜏) → 𝜓) | |
| 2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylanr1 682 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜏) ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: smoord 8295 addsrmo 10986 mulsrmo 10987 lediv12a 12036 nrmmetd 24478 pntrmax 27491 ablo4 30512 mdslmd3i 32294 atom1d 32315 fsumiunle 32787 esumiun 34063 poimirlem28 37630 fdc 37727 incsequz 37730 crngm4 37985 ps-2 39460 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |