MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrlr Structured version   Visualization version   GIF version

Theorem adantrlr 721
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrlr ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)

Proof of Theorem adantrlr
StepHypRef Expression
1 simpl 483 . 2 ((𝜓𝜏) → 𝜓)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr1 680 1 ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  smoord  8367  addsrmo  11070  mulsrmo  11071  lediv12a  12109  nrmmetd  24090  pntrmax  27074  ablo4  29841  mdslmd3i  31623  atom1d  31644  fsumiunle  32073  esumiun  33161  poimirlem28  36602  fdc  36699  incsequz  36702  crngm4  36957  ps-2  38435  aacllem  47926
  Copyright terms: Public domain W3C validator