MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrlr Structured version   Visualization version   GIF version

Theorem adantrlr 723
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrlr ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)

Proof of Theorem adantrlr
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr1 682 1 ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  smoord  8280  addsrmo  10959  mulsrmo  10960  lediv12a  12010  nrmmetd  24484  pntrmax  27497  ablo4  30522  mdslmd3i  32304  atom1d  32325  fsumiunle  32804  esumiun  34099  poimirlem28  37688  fdc  37785  incsequz  37788  crngm4  38043  ps-2  39517  aacllem  49833
  Copyright terms: Public domain W3C validator