Step | Hyp | Ref
| Expression |
1 | | fsuppssind.3 |
. . . . 5
⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
2 | | fsuppssind.s |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐼) |
3 | 1, 2 | fssresd 6639 |
. . . 4
⊢ (𝜑 → (𝑋 ↾ 𝑆):𝑆⟶𝐵) |
4 | | fsuppssind.4 |
. . . . 5
⊢ (𝜑 → 𝑋 finSupp 0 ) |
5 | | fsuppssind.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
6 | 5 | fvexi 6785 |
. . . . . 6
⊢ 0 ∈
V |
7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ∈ V) |
8 | 4, 7 | fsuppres 9131 |
. . . 4
⊢ (𝜑 → (𝑋 ↾ 𝑆) finSupp 0 ) |
9 | 3, 8 | jca 512 |
. . 3
⊢ (𝜑 → ((𝑋 ↾ 𝑆):𝑆⟶𝐵 ∧ (𝑋 ↾ 𝑆) finSupp 0 )) |
10 | | fsuppssind.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
11 | | fsuppssind.p |
. . . 4
⊢ + =
(+g‘𝐺) |
12 | | fsuppssind.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
13 | | fsuppssind.v |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
14 | 13, 2 | ssexd 5252 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ V) |
15 | 10, 5 | grpidcl 18605 |
. . . . . . 7
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
16 | 12, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈ 𝐵) |
17 | | fconst6g 6661 |
. . . . . 6
⊢ ( 0 ∈ 𝐵 → (𝑆 × { 0 }):𝑆⟶𝐵) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑆 × { 0 }):𝑆⟶𝐵) |
19 | | xpundir 5657 |
. . . . . . 7
⊢ ((𝑆 ∪ (𝐼 ∖ 𝑆)) × { 0 }) = ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) |
20 | | undif 4421 |
. . . . . . . . 9
⊢ (𝑆 ⊆ 𝐼 ↔ (𝑆 ∪ (𝐼 ∖ 𝑆)) = 𝐼) |
21 | 2, 20 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ (𝐼 ∖ 𝑆)) = 𝐼) |
22 | 21 | xpeq1d 5619 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 ∪ (𝐼 ∖ 𝑆)) × { 0 }) = (𝐼 × { 0 })) |
23 | 19, 22 | eqtr3id 2794 |
. . . . . 6
⊢ (𝜑 → ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) = (𝐼 × { 0 })) |
24 | | fsuppssind.0 |
. . . . . 6
⊢ (𝜑 → (𝐼 × { 0 }) ∈ 𝐻) |
25 | 23, 24 | eqeltrd 2841 |
. . . . 5
⊢ (𝜑 → ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) |
26 | 10 | fvexi 6785 |
. . . . . . 7
⊢ 𝐵 ∈ V |
27 | 26 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ V) |
28 | 27, 13, 2 | fsuppssindlem2 40278 |
. . . . 5
⊢ (𝜑 → ((𝑆 × { 0 }) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑆 × { 0 }):𝑆⟶𝐵 ∧ ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
29 | 18, 25, 28 | mpbir2and 710 |
. . . 4
⊢ (𝜑 → (𝑆 × { 0 }) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) |
30 | | simplrr 775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝑆) → 𝑏 ∈ 𝐵) |
31 | 16 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝑆) → 0 ∈ 𝐵) |
32 | 30, 31 | ifcld 4511 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝑆) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵) |
33 | 32 | fmpttd 6986 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝑆⟶𝐵) |
34 | | fconstmpt 5650 |
. . . . . . . 8
⊢ ((𝐼 ∖ 𝑆) × { 0 }) = (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) |
35 | 34 | uneq2i 4099 |
. . . . . . 7
⊢ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) |
36 | | eldifn 4067 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (𝐼 ∖ 𝑆) → ¬ 𝑠 ∈ 𝑆) |
37 | | eleq1a 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝑆 → (𝑠 = 𝑎 → 𝑠 ∈ 𝑆)) |
38 | 37 | con3dimp 409 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑆 ∧ ¬ 𝑠 ∈ 𝑆) → ¬ 𝑠 = 𝑎) |
39 | 38 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵) ∧ ¬ 𝑠 ∈ 𝑆) → ¬ 𝑠 = 𝑎) |
40 | 39 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ ¬ 𝑠 ∈ 𝑆) → ¬ 𝑠 = 𝑎) |
41 | 36, 40 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐼 ∖ 𝑆)) → ¬ 𝑠 = 𝑎) |
42 | 41 | iffalsed 4476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐼 ∖ 𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 ) |
43 | 42 | mpteq2dva 5179 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) |
44 | 43 | uneq2d 4102 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 ))) |
45 | | mptun 6577 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝑆 ∪ (𝐼 ∖ 𝑆)) ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) |
46 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝑆 ⊆ 𝐼) |
47 | 46, 20 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑆 ∪ (𝐼 ∖ 𝑆)) = 𝐼) |
48 | 47 | mpteq1d 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ (𝑆 ∪ (𝐼 ∖ 𝑆)) ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) |
49 | 45, 48 | eqtr3id 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) |
50 | 44, 49 | eqtr3d 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) |
51 | 35, 50 | eqtrid 2792 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) |
52 | | fsuppssind.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐻) |
53 | 51, 52 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) |
54 | 26 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐵 ∈ V) |
55 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
56 | 54, 55, 46 | fsuppssindlem2 40278 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝑆⟶𝐵 ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
57 | 33, 53, 56 | mpbir2and 710 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) |
58 | 27, 13, 2 | fsuppssindlem2 40278 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
59 | 27, 13, 2 | fsuppssindlem2 40278 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
60 | 58, 59 | anbi12d 631 |
. . . . 5
⊢ (𝜑 → ((𝑠 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ∧ 𝑡 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) ↔ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻)))) |
61 | 10, 11 | grpcl 18583 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
62 | 12, 61 | syl3an1 1162 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
63 | 62 | 3expb 1119 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 + 𝑣) ∈ 𝐵) |
64 | 63 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 + 𝑣) ∈ 𝐵) |
65 | | simprll 776 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑠:𝑆⟶𝐵) |
66 | | simprrl 778 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑡:𝑆⟶𝐵) |
67 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑆 ∈ V) |
68 | | inidm 4158 |
. . . . . . 7
⊢ (𝑆 ∩ 𝑆) = 𝑆 |
69 | 64, 65, 66, 67, 67, 68 | off 7545 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝑠 ∘f + 𝑡):𝑆⟶𝐵) |
70 | 65 | ffnd 6599 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑠 Fn 𝑆) |
71 | 66 | ffnd 6599 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑡 Fn 𝑆) |
72 | | fnconstg 6660 |
. . . . . . . . . 10
⊢ ( 0 ∈ V
→ ((𝐼 ∖ 𝑆) × { 0 }) Fn (𝐼 ∖ 𝑆)) |
73 | 6, 72 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝐼 ∖ 𝑆) × { 0 }) Fn (𝐼 ∖ 𝑆)) |
74 | 13 | difexd 5257 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 ∖ 𝑆) ∈ V) |
75 | 74 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝐼 ∖ 𝑆) ∈ V) |
76 | | disjdif 4411 |
. . . . . . . . . 10
⊢ (𝑆 ∩ (𝐼 ∖ 𝑆)) = ∅ |
77 | 76 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝑆 ∩ (𝐼 ∖ 𝑆)) = ∅) |
78 | 70, 71, 73, 73, 67, 75, 77 | ofun 40208 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 })))) |
79 | 6, 72 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐼 ∖ 𝑆) × { 0 }) Fn (𝐼 ∖ 𝑆)) |
80 | | fvconst2g 7074 |
. . . . . . . . . . . 12
⊢ (( 0 ∈ V
∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → (((𝐼 ∖ 𝑆) × { 0 })‘𝑗) = 0 ) |
81 | 7, 80 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → (((𝐼 ∖ 𝑆) × { 0 })‘𝑗) = 0 ) |
82 | 10, 11, 5 | grplid 18607 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
83 | 12, 16, 82 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
84 | 83 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → ( 0 + 0 ) = 0 ) |
85 | 6 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → 0 ∈ V) |
86 | 85, 80 | sylancom 588 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → (((𝐼 ∖ 𝑆) × { 0 })‘𝑗) = 0 ) |
87 | 84, 86 | eqtr4d 2783 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → ( 0 + 0 ) = (((𝐼 ∖ 𝑆) × { 0 })‘𝑗)) |
88 | 74, 79, 79, 79, 81, 81, 87 | offveq 7551 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 })) = ((𝐼 ∖ 𝑆) × { 0 })) |
89 | 88 | uneq2d 4102 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑠 ∘f + 𝑡) ∪ (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
90 | 89 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∘f + 𝑡) ∪ (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
91 | 78, 90 | eqtrd 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
92 | | fsuppssind.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ∘f + 𝑦) ∈ 𝐻) |
93 | 92 | caovclg 7458 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻)) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) ∈ 𝐻) |
94 | 93 | adantrrl 721 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻 ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) ∈ 𝐻) |
95 | 94 | adantrll 719 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) ∈ 𝐻) |
96 | 91, 95 | eqeltrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) |
97 | 27, 13, 2 | fsuppssindlem2 40278 |
. . . . . . 7
⊢ (𝜑 → ((𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑠 ∘f + 𝑡):𝑆⟶𝐵 ∧ ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
98 | 97 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑠 ∘f + 𝑡):𝑆⟶𝐵 ∧ ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
99 | 69, 96, 98 | mpbir2and 710 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) |
100 | 60, 99 | sylbida 592 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ∧ 𝑡 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻})) → (𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) |
101 | 10, 5, 11, 12, 14, 29, 57, 100 | fsuppind 40276 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ↾ 𝑆):𝑆⟶𝐵 ∧ (𝑋 ↾ 𝑆) finSupp 0 )) → (𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) |
102 | 9, 101 | mpdan 684 |
. 2
⊢ (𝜑 → (𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) |
103 | 27, 14 | elmapd 8612 |
. . . . 5
⊢ (𝜑 → ((𝑋 ↾ 𝑆) ∈ (𝐵 ↑m 𝑆) ↔ (𝑋 ↾ 𝑆):𝑆⟶𝐵)) |
104 | 3, 103 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑋 ↾ 𝑆) ∈ (𝐵 ↑m 𝑆)) |
105 | | fveq1 6770 |
. . . . . . . 8
⊢ (𝑓 = (𝑋 ↾ 𝑆) → (𝑓‘𝑖) = ((𝑋 ↾ 𝑆)‘𝑖)) |
106 | 105 | ifeq1d 4484 |
. . . . . . 7
⊢ (𝑓 = (𝑋 ↾ 𝑆) → if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 ) = if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) |
107 | 106 | mpteq2dv 5181 |
. . . . . 6
⊢ (𝑓 = (𝑋 ↾ 𝑆) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 ))) |
108 | 107 | eleq1d 2825 |
. . . . 5
⊢ (𝑓 = (𝑋 ↾ 𝑆) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻 ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) |
109 | 108 | elrab3 3627 |
. . . 4
⊢ ((𝑋 ↾ 𝑆) ∈ (𝐵 ↑m 𝑆) → ((𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) |
110 | 104, 109 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) |
111 | | fsuppssind.5 |
. . . . 5
⊢ (𝜑 → (𝑋 supp 0 ) ⊆ 𝑆) |
112 | 7, 13, 1, 111 | fsuppssindlem1 40277 |
. . . 4
⊢ (𝜑 → 𝑋 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 ))) |
113 | 112 | eleq1d 2825 |
. . 3
⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) |
114 | 110, 113 | bitr4d 281 |
. 2
⊢ (𝜑 → ((𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ 𝑋 ∈ 𝐻)) |
115 | 102, 114 | mpbid 231 |
1
⊢ (𝜑 → 𝑋 ∈ 𝐻) |