| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fsuppssind.3 | . . . . 5
⊢ (𝜑 → 𝑋:𝐼⟶𝐵) | 
| 2 |  | fsuppssind.s | . . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐼) | 
| 3 | 1, 2 | fssresd 6774 | . . . 4
⊢ (𝜑 → (𝑋 ↾ 𝑆):𝑆⟶𝐵) | 
| 4 |  | fsuppssind.4 | . . . . 5
⊢ (𝜑 → 𝑋 finSupp 0 ) | 
| 5 |  | fsuppssind.z | . . . . . . 7
⊢  0 =
(0g‘𝐺) | 
| 6 | 5 | fvexi 6919 | . . . . . 6
⊢  0 ∈
V | 
| 7 | 6 | a1i 11 | . . . . 5
⊢ (𝜑 → 0 ∈ V) | 
| 8 | 4, 7 | fsuppres 9434 | . . . 4
⊢ (𝜑 → (𝑋 ↾ 𝑆) finSupp 0 ) | 
| 9 | 3, 8 | jca 511 | . . 3
⊢ (𝜑 → ((𝑋 ↾ 𝑆):𝑆⟶𝐵 ∧ (𝑋 ↾ 𝑆) finSupp 0 )) | 
| 10 |  | fsuppssind.b | . . . 4
⊢ 𝐵 = (Base‘𝐺) | 
| 11 |  | fsuppssind.p | . . . 4
⊢  + =
(+g‘𝐺) | 
| 12 |  | fsuppssind.g | . . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) | 
| 13 |  | fsuppssind.v | . . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 14 | 13, 2 | ssexd 5323 | . . . 4
⊢ (𝜑 → 𝑆 ∈ V) | 
| 15 | 10, 5 | grpidcl 18984 | . . . . . . 7
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) | 
| 16 | 12, 15 | syl 17 | . . . . . 6
⊢ (𝜑 → 0 ∈ 𝐵) | 
| 17 |  | fconst6g 6796 | . . . . . 6
⊢ ( 0 ∈ 𝐵 → (𝑆 × { 0 }):𝑆⟶𝐵) | 
| 18 | 16, 17 | syl 17 | . . . . 5
⊢ (𝜑 → (𝑆 × { 0 }):𝑆⟶𝐵) | 
| 19 |  | xpundir 5754 | . . . . . . 7
⊢ ((𝑆 ∪ (𝐼 ∖ 𝑆)) × { 0 }) = ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) | 
| 20 |  | undif 4481 | . . . . . . . . 9
⊢ (𝑆 ⊆ 𝐼 ↔ (𝑆 ∪ (𝐼 ∖ 𝑆)) = 𝐼) | 
| 21 | 2, 20 | sylib 218 | . . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ (𝐼 ∖ 𝑆)) = 𝐼) | 
| 22 | 21 | xpeq1d 5713 | . . . . . . 7
⊢ (𝜑 → ((𝑆 ∪ (𝐼 ∖ 𝑆)) × { 0 }) = (𝐼 × { 0 })) | 
| 23 | 19, 22 | eqtr3id 2790 | . . . . . 6
⊢ (𝜑 → ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) = (𝐼 × { 0 })) | 
| 24 |  | fsuppssind.0 | . . . . . 6
⊢ (𝜑 → (𝐼 × { 0 }) ∈ 𝐻) | 
| 25 | 23, 24 | eqeltrd 2840 | . . . . 5
⊢ (𝜑 → ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) | 
| 26 | 10 | fvexi 6919 | . . . . . . 7
⊢ 𝐵 ∈ V | 
| 27 | 26 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ V) | 
| 28 | 27, 13, 2 | fsuppssindlem2 42607 | . . . . 5
⊢ (𝜑 → ((𝑆 × { 0 }) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑆 × { 0 }):𝑆⟶𝐵 ∧ ((𝑆 × { 0 }) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) | 
| 29 | 18, 25, 28 | mpbir2and 713 | . . . 4
⊢ (𝜑 → (𝑆 × { 0 }) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) | 
| 30 |  | simplrr 777 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝑆) → 𝑏 ∈ 𝐵) | 
| 31 | 16 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝑆) → 0 ∈ 𝐵) | 
| 32 | 30, 31 | ifcld 4571 | . . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ 𝑆) → if(𝑠 = 𝑎, 𝑏, 0 ) ∈ 𝐵) | 
| 33 | 32 | fmpttd 7134 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝑆⟶𝐵) | 
| 34 |  | fconstmpt 5746 | . . . . . . . 8
⊢ ((𝐼 ∖ 𝑆) × { 0 }) = (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) | 
| 35 | 34 | uneq2i 4164 | . . . . . . 7
⊢ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) | 
| 36 |  | eldifn 4131 | . . . . . . . . . . . 12
⊢ (𝑠 ∈ (𝐼 ∖ 𝑆) → ¬ 𝑠 ∈ 𝑆) | 
| 37 |  | eleq1a 2835 | . . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝑆 → (𝑠 = 𝑎 → 𝑠 ∈ 𝑆)) | 
| 38 | 37 | con3dimp 408 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑆 ∧ ¬ 𝑠 ∈ 𝑆) → ¬ 𝑠 = 𝑎) | 
| 39 | 38 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵) ∧ ¬ 𝑠 ∈ 𝑆) → ¬ 𝑠 = 𝑎) | 
| 40 | 39 | adantll 714 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ ¬ 𝑠 ∈ 𝑆) → ¬ 𝑠 = 𝑎) | 
| 41 | 36, 40 | sylan2 593 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐼 ∖ 𝑆)) → ¬ 𝑠 = 𝑎) | 
| 42 | 41 | iffalsed 4535 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑠 ∈ (𝐼 ∖ 𝑆)) → if(𝑠 = 𝑎, 𝑏, 0 ) = 0 ) | 
| 43 | 42 | mpteq2dva 5241 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) | 
| 44 | 43 | uneq2d 4167 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 ))) | 
| 45 |  | mptun 6713 | . . . . . . . . 9
⊢ (𝑠 ∈ (𝑆 ∪ (𝐼 ∖ 𝑆)) ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) | 
| 46 | 2 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝑆 ⊆ 𝐼) | 
| 47 | 46, 20 | sylib 218 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑆 ∪ (𝐼 ∖ 𝑆)) = 𝐼) | 
| 48 | 47 | mpteq1d 5236 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ (𝑆 ∪ (𝐼 ∖ 𝑆)) ↦ if(𝑠 = 𝑎, 𝑏, 0 )) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) | 
| 49 | 45, 48 | eqtr3id 2790 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) | 
| 50 | 44, 49 | eqtr3d 2778 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ (𝑠 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) | 
| 51 | 35, 50 | eqtrid 2788 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) = (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 ))) | 
| 52 |  | fsuppssind.1 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐻) | 
| 53 | 51, 52 | eqeltrd 2840 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) | 
| 54 | 26 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐵 ∈ V) | 
| 55 | 13 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑉) | 
| 56 | 54, 55, 46 | fsuppssindlem2 42607 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )):𝑆⟶𝐵 ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) | 
| 57 | 33, 53, 56 | mpbir2and 713 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵)) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) | 
| 58 | 27, 13, 2 | fsuppssindlem2 42607 | . . . . . 6
⊢ (𝜑 → (𝑠 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) | 
| 59 | 27, 13, 2 | fsuppssindlem2 42607 | . . . . . 6
⊢ (𝜑 → (𝑡 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) | 
| 60 | 58, 59 | anbi12d 632 | . . . . 5
⊢ (𝜑 → ((𝑠 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ∧ 𝑡 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) ↔ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻)))) | 
| 61 | 10, 11 | grpcl 18960 | . . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) | 
| 62 | 12, 61 | syl3an1 1163 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) | 
| 63 | 62 | 3expb 1120 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 + 𝑣) ∈ 𝐵) | 
| 64 | 63 | adantlr 715 | . . . . . . 7
⊢ (((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 + 𝑣) ∈ 𝐵) | 
| 65 |  | simprll 778 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑠:𝑆⟶𝐵) | 
| 66 |  | simprrl 780 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑡:𝑆⟶𝐵) | 
| 67 | 14 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑆 ∈ V) | 
| 68 |  | inidm 4226 | . . . . . . 7
⊢ (𝑆 ∩ 𝑆) = 𝑆 | 
| 69 | 64, 65, 66, 67, 67, 68 | off 7716 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝑠 ∘f + 𝑡):𝑆⟶𝐵) | 
| 70 | 65 | ffnd 6736 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑠 Fn 𝑆) | 
| 71 | 66 | ffnd 6736 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → 𝑡 Fn 𝑆) | 
| 72 |  | fnconstg 6795 | . . . . . . . . . 10
⊢ ( 0 ∈ V
→ ((𝐼 ∖ 𝑆) × { 0 }) Fn (𝐼 ∖ 𝑆)) | 
| 73 | 6, 72 | mp1i 13 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝐼 ∖ 𝑆) × { 0 }) Fn (𝐼 ∖ 𝑆)) | 
| 74 | 13 | difexd 5330 | . . . . . . . . . 10
⊢ (𝜑 → (𝐼 ∖ 𝑆) ∈ V) | 
| 75 | 74 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝐼 ∖ 𝑆) ∈ V) | 
| 76 |  | disjdif 4471 | . . . . . . . . . 10
⊢ (𝑆 ∩ (𝐼 ∖ 𝑆)) = ∅ | 
| 77 | 76 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝑆 ∩ (𝐼 ∖ 𝑆)) = ∅) | 
| 78 | 70, 71, 73, 73, 67, 75, 77 | ofun 42277 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 })))) | 
| 79 | 6, 72 | mp1i 13 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝐼 ∖ 𝑆) × { 0 }) Fn (𝐼 ∖ 𝑆)) | 
| 80 |  | fvconst2g 7223 | . . . . . . . . . . . 12
⊢ (( 0 ∈ V
∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → (((𝐼 ∖ 𝑆) × { 0 })‘𝑗) = 0 ) | 
| 81 | 7, 80 | sylan 580 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → (((𝐼 ∖ 𝑆) × { 0 })‘𝑗) = 0 ) | 
| 82 | 10, 11, 5 | grplid 18986 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) | 
| 83 | 12, 16, 82 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 → ( 0 + 0 ) = 0 ) | 
| 84 | 83 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → ( 0 + 0 ) = 0 ) | 
| 85 | 6 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → 0 ∈ V) | 
| 86 | 85, 80 | sylancom 588 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → (((𝐼 ∖ 𝑆) × { 0 })‘𝑗) = 0 ) | 
| 87 | 84, 86 | eqtr4d 2779 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐼 ∖ 𝑆)) → ( 0 + 0 ) = (((𝐼 ∖ 𝑆) × { 0 })‘𝑗)) | 
| 88 | 74, 79, 79, 79, 81, 81, 87 | offveq 7724 | . . . . . . . . . 10
⊢ (𝜑 → (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 })) = ((𝐼 ∖ 𝑆) × { 0 })) | 
| 89 | 88 | uneq2d 4167 | . . . . . . . . 9
⊢ (𝜑 → ((𝑠 ∘f + 𝑡) ∪ (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 }))) | 
| 90 | 89 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∘f + 𝑡) ∪ (((𝐼 ∖ 𝑆) × { 0 }) ∘f
+ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 }))) | 
| 91 | 78, 90 | eqtrd 2776 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) = ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 }))) | 
| 92 |  | fsuppssind.2 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ∘f + 𝑦) ∈ 𝐻) | 
| 93 | 92 | caovclg 7626 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻)) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) ∈ 𝐻) | 
| 94 | 93 | adantrrl 724 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻 ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) ∈ 𝐻) | 
| 95 | 94 | adantrll 722 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∘f
+ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) ∈ 𝐻) | 
| 96 | 91, 95 | eqeltrrd 2841 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) | 
| 97 | 27, 13, 2 | fsuppssindlem2 42607 | . . . . . . 7
⊢ (𝜑 → ((𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑠 ∘f + 𝑡):𝑆⟶𝐵 ∧ ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) | 
| 98 | 97 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → ((𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ ((𝑠 ∘f + 𝑡):𝑆⟶𝐵 ∧ ((𝑠 ∘f + 𝑡) ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) | 
| 99 | 69, 96, 98 | mpbir2and 713 | . . . . 5
⊢ ((𝜑 ∧ ((𝑠:𝑆⟶𝐵 ∧ (𝑠 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻) ∧ (𝑡:𝑆⟶𝐵 ∧ (𝑡 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) → (𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) | 
| 100 | 60, 99 | sylbida 592 | . . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ∧ 𝑡 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻})) → (𝑠 ∘f + 𝑡) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) | 
| 101 | 10, 5, 11, 12, 14, 29, 57, 100 | fsuppind 42605 | . . 3
⊢ ((𝜑 ∧ ((𝑋 ↾ 𝑆):𝑆⟶𝐵 ∧ (𝑋 ↾ 𝑆) finSupp 0 )) → (𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) | 
| 102 | 9, 101 | mpdan 687 | . 2
⊢ (𝜑 → (𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻}) | 
| 103 | 27, 14 | elmapd 8881 | . . . . 5
⊢ (𝜑 → ((𝑋 ↾ 𝑆) ∈ (𝐵 ↑m 𝑆) ↔ (𝑋 ↾ 𝑆):𝑆⟶𝐵)) | 
| 104 | 3, 103 | mpbird 257 | . . . 4
⊢ (𝜑 → (𝑋 ↾ 𝑆) ∈ (𝐵 ↑m 𝑆)) | 
| 105 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑓 = (𝑋 ↾ 𝑆) → (𝑓‘𝑖) = ((𝑋 ↾ 𝑆)‘𝑖)) | 
| 106 | 105 | ifeq1d 4544 | . . . . . . 7
⊢ (𝑓 = (𝑋 ↾ 𝑆) → if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 ) = if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) | 
| 107 | 106 | mpteq2dv 5243 | . . . . . 6
⊢ (𝑓 = (𝑋 ↾ 𝑆) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 ))) | 
| 108 | 107 | eleq1d 2825 | . . . . 5
⊢ (𝑓 = (𝑋 ↾ 𝑆) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻 ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) | 
| 109 | 108 | elrab3 3692 | . . . 4
⊢ ((𝑋 ↾ 𝑆) ∈ (𝐵 ↑m 𝑆) → ((𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) | 
| 110 | 104, 109 | syl 17 | . . 3
⊢ (𝜑 → ((𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) | 
| 111 |  | fsuppssind.5 | . . . . 5
⊢ (𝜑 → (𝑋 supp 0 ) ⊆ 𝑆) | 
| 112 | 7, 13, 1, 111 | fsuppssindlem1 42606 | . . . 4
⊢ (𝜑 → 𝑋 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 ))) | 
| 113 | 112 | eleq1d 2825 | . . 3
⊢ (𝜑 → (𝑋 ∈ 𝐻 ↔ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, ((𝑋 ↾ 𝑆)‘𝑖), 0 )) ∈ 𝐻)) | 
| 114 | 110, 113 | bitr4d 282 | . 2
⊢ (𝜑 → ((𝑋 ↾ 𝑆) ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑆, (𝑓‘𝑖), 0 )) ∈ 𝐻} ↔ 𝑋 ∈ 𝐻)) | 
| 115 | 102, 114 | mpbid 232 | 1
⊢ (𝜑 → 𝑋 ∈ 𝐻) |