MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmmetd Structured version   Visualization version   GIF version

Theorem nrmmetd 22658
Description: Show that a group norm generates a metric. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nrmmetd.x 𝑋 = (Base‘𝐺)
nrmmetd.m = (-g𝐺)
nrmmetd.z 0 = (0g𝐺)
nrmmetd.g (𝜑𝐺 ∈ Grp)
nrmmetd.f (𝜑𝐹:𝑋⟶ℝ)
nrmmetd.1 ((𝜑𝑥𝑋) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
nrmmetd.2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
nrmmetd (𝜑 → (𝐹 ) ∈ (Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,   𝑥, 0 ,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem nrmmetd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmmetd.f . . 3 (𝜑𝐹:𝑋⟶ℝ)
2 nrmmetd.g . . . 4 (𝜑𝐺 ∈ Grp)
3 nrmmetd.x . . . . 5 𝑋 = (Base‘𝐺)
4 nrmmetd.m . . . . 5 = (-g𝐺)
53, 4grpsubf 17763 . . . 4 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
62, 5syl 17 . . 3 (𝜑 :(𝑋 × 𝑋)⟶𝑋)
7 fco 6240 . . 3 ((𝐹:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝐹 ):(𝑋 × 𝑋)⟶ℝ)
81, 6, 7syl2anc 579 . 2 (𝜑 → (𝐹 ):(𝑋 × 𝑋)⟶ℝ)
9 opelxpi 5314 . . . . . . . 8 ((𝑎𝑋𝑏𝑋) → ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋))
10 fvco3 6464 . . . . . . . 8 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹 )‘⟨𝑎, 𝑏⟩) = (𝐹‘( ‘⟨𝑎, 𝑏⟩)))
116, 9, 10syl2an 589 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹 )‘⟨𝑎, 𝑏⟩) = (𝐹‘( ‘⟨𝑎, 𝑏⟩)))
12 df-ov 6845 . . . . . . 7 (𝑎(𝐹 )𝑏) = ((𝐹 )‘⟨𝑎, 𝑏⟩)
13 df-ov 6845 . . . . . . . 8 (𝑎 𝑏) = ( ‘⟨𝑎, 𝑏⟩)
1413fveq2i 6378 . . . . . . 7 (𝐹‘(𝑎 𝑏)) = (𝐹‘( ‘⟨𝑎, 𝑏⟩))
1511, 12, 143eqtr4g 2824 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(𝐹 )𝑏) = (𝐹‘(𝑎 𝑏)))
1615eqeq1d 2767 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹 )𝑏) = 0 ↔ (𝐹‘(𝑎 𝑏)) = 0))
173, 4grpsubcl 17764 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝑋𝑏𝑋) → (𝑎 𝑏) ∈ 𝑋)
18173expb 1149 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 𝑏) ∈ 𝑋)
192, 18sylan 575 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 𝑏) ∈ 𝑋)
20 nrmmetd.1 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
2120ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑥𝑋 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
22 fveq2 6375 . . . . . . . . . 10 (𝑥 = (𝑎 𝑏) → (𝐹𝑥) = (𝐹‘(𝑎 𝑏)))
2322eqeq1d 2767 . . . . . . . . 9 (𝑥 = (𝑎 𝑏) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑎 𝑏)) = 0))
24 eqeq1 2769 . . . . . . . . 9 (𝑥 = (𝑎 𝑏) → (𝑥 = 0 ↔ (𝑎 𝑏) = 0 ))
2523, 24bibi12d 336 . . . . . . . 8 (𝑥 = (𝑎 𝑏) → (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘(𝑎 𝑏)) = 0 ↔ (𝑎 𝑏) = 0 )))
2625rspccva 3460 . . . . . . 7 ((∀𝑥𝑋 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ (𝑎 𝑏) ∈ 𝑋) → ((𝐹‘(𝑎 𝑏)) = 0 ↔ (𝑎 𝑏) = 0 ))
2721, 26sylan 575 . . . . . 6 ((𝜑 ∧ (𝑎 𝑏) ∈ 𝑋) → ((𝐹‘(𝑎 𝑏)) = 0 ↔ (𝑎 𝑏) = 0 ))
2819, 27syldan 585 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹‘(𝑎 𝑏)) = 0 ↔ (𝑎 𝑏) = 0 ))
29 nrmmetd.z . . . . . . . 8 0 = (0g𝐺)
303, 29, 4grpsubeq0 17770 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑎𝑋𝑏𝑋) → ((𝑎 𝑏) = 0𝑎 = 𝑏))
31303expb 1149 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎 𝑏) = 0𝑎 = 𝑏))
322, 31sylan 575 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎 𝑏) = 0𝑎 = 𝑏))
3316, 28, 323bitrd 296 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹 )𝑏) = 0 ↔ 𝑎 = 𝑏))
341adantr 472 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → 𝐹:𝑋⟶ℝ)
3519adantrr 708 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑎 𝑏) ∈ 𝑋)
3634, 35ffvelrnd 6550 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑎 𝑏)) ∈ ℝ)
372adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → 𝐺 ∈ Grp)
38 simprll 797 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → 𝑎𝑋)
39 simprr 789 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → 𝑐𝑋)
403, 4grpsubcl 17764 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑎𝑋𝑐𝑋) → (𝑎 𝑐) ∈ 𝑋)
4137, 38, 39, 40syl3anc 1490 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑎 𝑐) ∈ 𝑋)
4234, 41ffvelrnd 6550 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑎 𝑐)) ∈ ℝ)
43 simprlr 798 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → 𝑏𝑋)
443, 4grpsubcl 17764 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 𝑐) ∈ 𝑋)
4537, 43, 39, 44syl3anc 1490 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑏 𝑐) ∈ 𝑋)
4634, 45ffvelrnd 6550 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑏 𝑐)) ∈ ℝ)
4742, 46readdcld 10323 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐))) ∈ ℝ)
483, 4grpsubcl 17764 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑐𝑋𝑎𝑋) → (𝑐 𝑎) ∈ 𝑋)
4937, 39, 38, 48syl3anc 1490 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑐 𝑎) ∈ 𝑋)
5034, 49ffvelrnd 6550 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑐 𝑎)) ∈ ℝ)
513, 4grpsubcl 17764 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑐𝑋𝑏𝑋) → (𝑐 𝑏) ∈ 𝑋)
5237, 39, 43, 51syl3anc 1490 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑐 𝑏) ∈ 𝑋)
5334, 52ffvelrnd 6550 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑐 𝑏)) ∈ ℝ)
5450, 53readdcld 10323 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝐹‘(𝑐 𝑎)) + (𝐹‘(𝑐 𝑏))) ∈ ℝ)
553, 4grpnnncan2 17781 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑎 𝑐) (𝑏 𝑐)) = (𝑎 𝑏))
5637, 38, 43, 39, 55syl13anc 1491 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝑎 𝑐) (𝑏 𝑐)) = (𝑎 𝑏))
5756fveq2d 6379 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘((𝑎 𝑐) (𝑏 𝑐))) = (𝐹‘(𝑎 𝑏)))
58 nrmmetd.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
5958ralrimivva 3118 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
6059adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
61 fvoveq1 6865 . . . . . . . . . . . 12 (𝑥 = (𝑎 𝑐) → (𝐹‘(𝑥 𝑦)) = (𝐹‘((𝑎 𝑐) 𝑦)))
62 fveq2 6375 . . . . . . . . . . . . 13 (𝑥 = (𝑎 𝑐) → (𝐹𝑥) = (𝐹‘(𝑎 𝑐)))
6362oveq1d 6857 . . . . . . . . . . . 12 (𝑥 = (𝑎 𝑐) → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘(𝑎 𝑐)) + (𝐹𝑦)))
6461, 63breq12d 4822 . . . . . . . . . . 11 (𝑥 = (𝑎 𝑐) → ((𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘((𝑎 𝑐) 𝑦)) ≤ ((𝐹‘(𝑎 𝑐)) + (𝐹𝑦))))
65 oveq2 6850 . . . . . . . . . . . . 13 (𝑦 = (𝑏 𝑐) → ((𝑎 𝑐) 𝑦) = ((𝑎 𝑐) (𝑏 𝑐)))
6665fveq2d 6379 . . . . . . . . . . . 12 (𝑦 = (𝑏 𝑐) → (𝐹‘((𝑎 𝑐) 𝑦)) = (𝐹‘((𝑎 𝑐) (𝑏 𝑐))))
67 fveq2 6375 . . . . . . . . . . . . 13 (𝑦 = (𝑏 𝑐) → (𝐹𝑦) = (𝐹‘(𝑏 𝑐)))
6867oveq2d 6858 . . . . . . . . . . . 12 (𝑦 = (𝑏 𝑐) → ((𝐹‘(𝑎 𝑐)) + (𝐹𝑦)) = ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐))))
6966, 68breq12d 4822 . . . . . . . . . . 11 (𝑦 = (𝑏 𝑐) → ((𝐹‘((𝑎 𝑐) 𝑦)) ≤ ((𝐹‘(𝑎 𝑐)) + (𝐹𝑦)) ↔ (𝐹‘((𝑎 𝑐) (𝑏 𝑐))) ≤ ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐)))))
7064, 69rspc2va 3475 . . . . . . . . . 10 ((((𝑎 𝑐) ∈ 𝑋 ∧ (𝑏 𝑐) ∈ 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘((𝑎 𝑐) (𝑏 𝑐))) ≤ ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐))))
7141, 45, 60, 70syl21anc 866 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘((𝑎 𝑐) (𝑏 𝑐))) ≤ ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐))))
7257, 71eqbrtrrd 4833 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑎 𝑏)) ≤ ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐))))
73 eleq1w 2827 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (𝑏𝑋𝑐𝑋))
7473anbi2d 622 . . . . . . . . . . . . 13 (𝑏 = 𝑐 → ((𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑐𝑋)))
7574anbi2d 622 . . . . . . . . . . . 12 (𝑏 = 𝑐 → ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) ↔ (𝜑 ∧ (𝑎𝑋𝑐𝑋))))
76 oveq2 6850 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (𝑎 𝑏) = (𝑎 𝑐))
7776fveq2d 6379 . . . . . . . . . . . . 13 (𝑏 = 𝑐 → (𝐹‘(𝑎 𝑏)) = (𝐹‘(𝑎 𝑐)))
78 fvoveq1 6865 . . . . . . . . . . . . 13 (𝑏 = 𝑐 → (𝐹‘(𝑏 𝑎)) = (𝐹‘(𝑐 𝑎)))
7977, 78breq12d 4822 . . . . . . . . . . . 12 (𝑏 = 𝑐 → ((𝐹‘(𝑎 𝑏)) ≤ (𝐹‘(𝑏 𝑎)) ↔ (𝐹‘(𝑎 𝑐)) ≤ (𝐹‘(𝑐 𝑎))))
8075, 79imbi12d 335 . . . . . . . . . . 11 (𝑏 = 𝑐 → (((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎 𝑏)) ≤ (𝐹‘(𝑏 𝑎))) ↔ ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐹‘(𝑎 𝑐)) ≤ (𝐹‘(𝑐 𝑎)))))
812adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → 𝐺 ∈ Grp)
823, 29grpidcl 17719 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 0𝑋)
8381, 82syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → 0𝑋)
84 simprr 789 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
85 simprl 787 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
863, 4grpsubcl 17764 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑎𝑋) → (𝑏 𝑎) ∈ 𝑋)
8781, 84, 85, 86syl3anc 1490 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑏 𝑎) ∈ 𝑋)
8859adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
89 fvoveq1 6865 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝐹‘(𝑥 𝑦)) = (𝐹‘( 0 𝑦)))
90 fveq2 6375 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝐹𝑥) = (𝐹0 ))
9190oveq1d 6857 . . . . . . . . . . . . . . 15 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹0 ) + (𝐹𝑦)))
9289, 91breq12d 4822 . . . . . . . . . . . . . 14 (𝑥 = 0 → ((𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘( 0 𝑦)) ≤ ((𝐹0 ) + (𝐹𝑦))))
93 oveq2 6850 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑏 𝑎) → ( 0 𝑦) = ( 0 (𝑏 𝑎)))
9493fveq2d 6379 . . . . . . . . . . . . . . 15 (𝑦 = (𝑏 𝑎) → (𝐹‘( 0 𝑦)) = (𝐹‘( 0 (𝑏 𝑎))))
95 fveq2 6375 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑏 𝑎) → (𝐹𝑦) = (𝐹‘(𝑏 𝑎)))
9695oveq2d 6858 . . . . . . . . . . . . . . 15 (𝑦 = (𝑏 𝑎) → ((𝐹0 ) + (𝐹𝑦)) = ((𝐹0 ) + (𝐹‘(𝑏 𝑎))))
9794, 96breq12d 4822 . . . . . . . . . . . . . 14 (𝑦 = (𝑏 𝑎) → ((𝐹‘( 0 𝑦)) ≤ ((𝐹0 ) + (𝐹𝑦)) ↔ (𝐹‘( 0 (𝑏 𝑎))) ≤ ((𝐹0 ) + (𝐹‘(𝑏 𝑎)))))
9892, 97rspc2va 3475 . . . . . . . . . . . . 13 ((( 0𝑋 ∧ (𝑏 𝑎) ∈ 𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘( 0 (𝑏 𝑎))) ≤ ((𝐹0 ) + (𝐹‘(𝑏 𝑎))))
9983, 87, 88, 98syl21anc 866 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘( 0 (𝑏 𝑎))) ≤ ((𝐹0 ) + (𝐹‘(𝑏 𝑎))))
100 eqid 2765 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
1013, 4, 100, 29grpinvval2 17767 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑏 𝑎) ∈ 𝑋) → ((invg𝐺)‘(𝑏 𝑎)) = ( 0 (𝑏 𝑎)))
10281, 87, 101syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((invg𝐺)‘(𝑏 𝑎)) = ( 0 (𝑏 𝑎)))
1033, 4, 100grpinvsub 17766 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑎𝑋) → ((invg𝐺)‘(𝑏 𝑎)) = (𝑎 𝑏))
10481, 84, 85, 103syl3anc 1490 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((invg𝐺)‘(𝑏 𝑎)) = (𝑎 𝑏))
105102, 104eqtr3d 2801 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ( 0 (𝑏 𝑎)) = (𝑎 𝑏))
106105fveq2d 6379 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘( 0 (𝑏 𝑎))) = (𝐹‘(𝑎 𝑏)))
1072, 82syl 17 . . . . . . . . . . . . . . . 16 (𝜑0𝑋)
108 pm5.501 357 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → ((𝐹𝑥) = 0 ↔ (𝑥 = 0 ↔ (𝐹𝑥) = 0)))
109 bicom 213 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ↔ (𝐹𝑥) = 0) ↔ ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
110108, 109syl6bb 278 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → ((𝐹𝑥) = 0 ↔ ((𝐹𝑥) = 0 ↔ 𝑥 = 0 )))
11190eqeq1d 2767 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → ((𝐹𝑥) = 0 ↔ (𝐹0 ) = 0))
112110, 111bitr3d 272 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ↔ (𝐹0 ) = 0))
113112rspccva 3460 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑋 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 0𝑋) → (𝐹0 ) = 0)
11421, 107, 113syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹0 ) = 0)
115114adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹0 ) = 0)
116115oveq1d 6857 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹0 ) + (𝐹‘(𝑏 𝑎))) = (0 + (𝐹‘(𝑏 𝑎))))
1171adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → 𝐹:𝑋⟶ℝ)
118117, 87ffvelrnd 6550 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑏 𝑎)) ∈ ℝ)
119118recnd 10322 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑏 𝑎)) ∈ ℂ)
120119addid2d 10491 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (0 + (𝐹‘(𝑏 𝑎))) = (𝐹‘(𝑏 𝑎)))
121116, 120eqtrd 2799 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹0 ) + (𝐹‘(𝑏 𝑎))) = (𝐹‘(𝑏 𝑎)))
12299, 106, 1213brtr3d 4840 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎 𝑏)) ≤ (𝐹‘(𝑏 𝑎)))
12380, 122chvarv 2369 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐹‘(𝑎 𝑐)) ≤ (𝐹‘(𝑐 𝑎)))
124123adantrlr 714 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑎 𝑐)) ≤ (𝐹‘(𝑐 𝑎)))
125 eleq1w 2827 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎𝑋𝑏𝑋))
126125anbi1d 623 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → ((𝑎𝑋𝑐𝑋) ↔ (𝑏𝑋𝑐𝑋)))
127126anbi2d 622 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) ↔ (𝜑 ∧ (𝑏𝑋𝑐𝑋))))
128 fvoveq1 6865 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐹‘(𝑎 𝑐)) = (𝐹‘(𝑏 𝑐)))
129 oveq2 6850 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑐 𝑎) = (𝑐 𝑏))
130129fveq2d 6379 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐹‘(𝑐 𝑎)) = (𝐹‘(𝑐 𝑏)))
131128, 130breq12d 4822 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝐹‘(𝑎 𝑐)) ≤ (𝐹‘(𝑐 𝑎)) ↔ (𝐹‘(𝑏 𝑐)) ≤ (𝐹‘(𝑐 𝑏))))
132127, 131imbi12d 335 . . . . . . . . . . 11 (𝑎 = 𝑏 → (((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐹‘(𝑎 𝑐)) ≤ (𝐹‘(𝑐 𝑎))) ↔ ((𝜑 ∧ (𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑏 𝑐)) ≤ (𝐹‘(𝑐 𝑏)))))
133132, 123chvarv 2369 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑏 𝑐)) ≤ (𝐹‘(𝑐 𝑏)))
134133adantrll 713 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑏 𝑐)) ≤ (𝐹‘(𝑐 𝑏)))
13542, 46, 50, 53, 124, 134le2addd 10900 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝐹‘(𝑎 𝑐)) + (𝐹‘(𝑏 𝑐))) ≤ ((𝐹‘(𝑐 𝑎)) + (𝐹‘(𝑐 𝑏))))
13636, 47, 54, 72, 135letrd 10448 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝐹‘(𝑎 𝑏)) ≤ ((𝐹‘(𝑐 𝑎)) + (𝐹‘(𝑐 𝑏))))
13715adantrr 708 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑎(𝐹 )𝑏) = (𝐹‘(𝑎 𝑏)))
1386adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → :(𝑋 × 𝑋)⟶𝑋)
139 opelxpi 5314 . . . . . . . . . . 11 ((𝑐𝑋𝑎𝑋) → ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋))
14039, 38, 139syl2anc 579 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋))
141 fvco3 6464 . . . . . . . . . 10 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋)) → ((𝐹 )‘⟨𝑐, 𝑎⟩) = (𝐹‘( ‘⟨𝑐, 𝑎⟩)))
142138, 140, 141syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝐹 )‘⟨𝑐, 𝑎⟩) = (𝐹‘( ‘⟨𝑐, 𝑎⟩)))
143 df-ov 6845 . . . . . . . . 9 (𝑐(𝐹 )𝑎) = ((𝐹 )‘⟨𝑐, 𝑎⟩)
144 df-ov 6845 . . . . . . . . . 10 (𝑐 𝑎) = ( ‘⟨𝑐, 𝑎⟩)
145144fveq2i 6378 . . . . . . . . 9 (𝐹‘(𝑐 𝑎)) = (𝐹‘( ‘⟨𝑐, 𝑎⟩))
146142, 143, 1453eqtr4g 2824 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑐(𝐹 )𝑎) = (𝐹‘(𝑐 𝑎)))
147 opelxpi 5314 . . . . . . . . . . 11 ((𝑐𝑋𝑏𝑋) → ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋))
14839, 43, 147syl2anc 579 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋))
149 fvco3 6464 . . . . . . . . . 10 (( :(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹 )‘⟨𝑐, 𝑏⟩) = (𝐹‘( ‘⟨𝑐, 𝑏⟩)))
150138, 148, 149syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝐹 )‘⟨𝑐, 𝑏⟩) = (𝐹‘( ‘⟨𝑐, 𝑏⟩)))
151 df-ov 6845 . . . . . . . . 9 (𝑐(𝐹 )𝑏) = ((𝐹 )‘⟨𝑐, 𝑏⟩)
152 df-ov 6845 . . . . . . . . . 10 (𝑐 𝑏) = ( ‘⟨𝑐, 𝑏⟩)
153152fveq2i 6378 . . . . . . . . 9 (𝐹‘(𝑐 𝑏)) = (𝐹‘( ‘⟨𝑐, 𝑏⟩))
154150, 151, 1533eqtr4g 2824 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑐(𝐹 )𝑏) = (𝐹‘(𝑐 𝑏)))
155146, 154oveq12d 6860 . . . . . . 7 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏)) = ((𝐹‘(𝑐 𝑎)) + (𝐹‘(𝑐 𝑏))))
156136, 137, 1553brtr4d 4841 . . . . . 6 ((𝜑 ∧ ((𝑎𝑋𝑏𝑋) ∧ 𝑐𝑋)) → (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏)))
157156expr 448 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑐𝑋 → (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏))))
158157ralrimiv 3112 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ∀𝑐𝑋 (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏)))
15933, 158jca 507 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (((𝑎(𝐹 )𝑏) = 0 ↔ 𝑎 = 𝑏) ∧ ∀𝑐𝑋 (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏))))
160159ralrimivva 3118 . 2 (𝜑 → ∀𝑎𝑋𝑏𝑋 (((𝑎(𝐹 )𝑏) = 0 ↔ 𝑎 = 𝑏) ∧ ∀𝑐𝑋 (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏))))
1613fvexi 6389 . . 3 𝑋 ∈ V
162 ismet 22407 . . 3 (𝑋 ∈ V → ((𝐹 ) ∈ (Met‘𝑋) ↔ ((𝐹 ):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑎𝑋𝑏𝑋 (((𝑎(𝐹 )𝑏) = 0 ↔ 𝑎 = 𝑏) ∧ ∀𝑐𝑋 (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏))))))
163161, 162ax-mp 5 . 2 ((𝐹 ) ∈ (Met‘𝑋) ↔ ((𝐹 ):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑎𝑋𝑏𝑋 (((𝑎(𝐹 )𝑏) = 0 ↔ 𝑎 = 𝑏) ∧ ∀𝑐𝑋 (𝑎(𝐹 )𝑏) ≤ ((𝑐(𝐹 )𝑎) + (𝑐(𝐹 )𝑏)))))
1648, 160, 163sylanbrc 578 1 (𝜑 → (𝐹 ) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cop 4340   class class class wbr 4809   × cxp 5275  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189   + caddc 10192  cle 10329  Basecbs 16132  0gc0g 16368  Grpcgrp 17691  invgcminusg 17692  -gcsg 17693  Metcmet 20005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-sbg 17696  df-met 20013
This theorem is referenced by:  abvmet  22659  tngngpd  22736
  Copyright terms: Public domain W3C validator