MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Visualization version   GIF version

Theorem lo1le 14670
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1 (𝜑𝑀 ∈ ℝ)
lo1le.2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1le.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1le.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1le.5 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
Assertion
Ref Expression
lo1le (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1le
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 simpr 477 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 lo1le.1 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
43adantr 472 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑀 ∈ ℝ)
52, 4ifcld 4290 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ)
63ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑀 ∈ ℝ)
7 simplr 785 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑦 ∈ ℝ)
8 lo1le.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
98ralrimiva 3113 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
10 dmmptg 5820 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 lo1dm 14538 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstr3d 3802 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
1514ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝐴 ⊆ ℝ)
16 simprr 789 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
1715, 16sseldd 3764 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ)
18 maxle 12227 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
196, 7, 17, 18syl3anc 1490 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
20 simpr 477 . . . . . . . . . . 11 ((𝑀𝑥𝑦𝑥) → 𝑦𝑥)
2119, 20syl6bi 244 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝑦𝑥))
2221imim1d 82 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚)))
23 lo1le.5 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2423adantlr 706 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2524adantrll 713 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶𝐵)
26 simpl 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝜑)
27 simplr 785 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥) → 𝑥𝐴)
28 lo1le.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2926, 27, 28syl2an 589 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶 ∈ ℝ)
308, 1lo1mptrcl 14640 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3126, 27, 30syl2an 589 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐵 ∈ ℝ)
32 simprll 797 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝑚 ∈ ℝ)
33 letr 10387 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3429, 31, 32, 33syl3anc 1490 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3525, 34mpand 686 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → (𝐵𝑚𝐶𝑚))
3635expr 448 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (𝑀𝑥 → (𝐵𝑚𝐶𝑚)))
3736adantrd 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑀𝑥𝑦𝑥) → (𝐵𝑚𝐶𝑚)))
3819, 37sylbid 231 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 → (𝐵𝑚𝐶𝑚)))
3938a2d 29 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4022, 39syld 47 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4140anassrs 459 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4241ralimdva 3109 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4342reximdva 3163 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
44 breq1 4814 . . . . . . . 8 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (𝑧𝑥 ↔ if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥))
4544imbi1d 332 . . . . . . 7 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → ((𝑧𝑥𝐶𝑚) ↔ (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4645rexralbidv 3205 . . . . . 6 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚) ↔ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4746rspcev 3462 . . . . 5 ((if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ ∧ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚))
485, 43, 47syl6an 674 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
4948rexlimdva 3178 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5014, 30ello1mpt 14540 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
5114, 28ello1mpt 14540 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5249, 50, 513imtr4d 285 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
531, 52mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3734  ifcif 4245   class class class wbr 4811  cmpt 4890  dom cdm 5279  cr 10190  cle 10331  ≤𝑂(1)clo1 14506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-pre-lttri 10265  ax-pre-lttrn 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-er 7949  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-ico 12386  df-lo1 14510
This theorem is referenced by:  o1le  14671  vmalogdivsum2  25521  pntrlog2bndlem1  25560  pntrlog2bndlem5  25564
  Copyright terms: Public domain W3C validator