Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Visualization version   GIF version

Theorem lo1le 15000
 Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1 (𝜑𝑀 ∈ ℝ)
lo1le.2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1le.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1le.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1le.5 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
Assertion
Ref Expression
lo1le (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1le
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 simpr 487 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 lo1le.1 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
43adantr 483 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑀 ∈ ℝ)
52, 4ifcld 4510 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ)
63ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑀 ∈ ℝ)
7 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑦 ∈ ℝ)
8 lo1le.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
98ralrimiva 3180 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
10 dmmptg 6089 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 lo1dm 14868 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstrrd 4004 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
1514ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝐴 ⊆ ℝ)
16 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
1715, 16sseldd 3966 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ)
18 maxle 12576 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
196, 7, 17, 18syl3anc 1365 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
20 simpr 487 . . . . . . . . . . 11 ((𝑀𝑥𝑦𝑥) → 𝑦𝑥)
2119, 20syl6bi 255 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝑦𝑥))
2221imim1d 82 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚)))
23 lo1le.5 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2423adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2524adantrll 720 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶𝐵)
26 simpl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝜑)
27 simplr 767 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥) → 𝑥𝐴)
28 lo1le.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2926, 27, 28syl2an 597 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶 ∈ ℝ)
308, 1lo1mptrcl 14970 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3126, 27, 30syl2an 597 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐵 ∈ ℝ)
32 simprll 777 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝑚 ∈ ℝ)
33 letr 10726 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3429, 31, 32, 33syl3anc 1365 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3525, 34mpand 693 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → (𝐵𝑚𝐶𝑚))
3635expr 459 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (𝑀𝑥 → (𝐵𝑚𝐶𝑚)))
3736adantrd 494 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑀𝑥𝑦𝑥) → (𝐵𝑚𝐶𝑚)))
3819, 37sylbid 242 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 → (𝐵𝑚𝐶𝑚)))
3938a2d 29 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4022, 39syld 47 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4140anassrs 470 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4241ralimdva 3175 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4342reximdva 3272 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
44 breq1 5060 . . . . . . . 8 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (𝑧𝑥 ↔ if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥))
4544imbi1d 344 . . . . . . 7 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → ((𝑧𝑥𝐶𝑚) ↔ (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4645rexralbidv 3299 . . . . . 6 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚) ↔ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4746rspcev 3621 . . . . 5 ((if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ ∧ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚))
485, 43, 47syl6an 682 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
4948rexlimdva 3282 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5014, 30ello1mpt 14870 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
5114, 28ello1mpt 14870 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5249, 50, 513imtr4d 296 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
531, 52mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1530   ∈ wcel 2107  ∀wral 3136  ∃wrex 3137   ⊆ wss 3934  ifcif 4465   class class class wbr 5057   ↦ cmpt 5137  dom cdm 5548  ℝcr 10528   ≤ cle 10668  ≤𝑂(1)clo1 14836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ico 12736  df-lo1 14840 This theorem is referenced by:  o1le  15001  vmalogdivsum2  26106  pntrlog2bndlem1  26145  pntrlog2bndlem5  26149
 Copyright terms: Public domain W3C validator