MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Visualization version   GIF version

Theorem lo1le 14760
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1 (𝜑𝑀 ∈ ℝ)
lo1le.2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1le.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1le.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1le.5 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
Assertion
Ref Expression
lo1le (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1le
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 simpr 479 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 lo1le.1 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
43adantr 474 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑀 ∈ ℝ)
52, 4ifcld 4352 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ)
63ad2antrr 719 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑀 ∈ ℝ)
7 simplr 787 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑦 ∈ ℝ)
8 lo1le.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
98ralrimiva 3176 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
10 dmmptg 5874 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 lo1dm 14628 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstr3d 3866 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
1514ad2antrr 719 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝐴 ⊆ ℝ)
16 simprr 791 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
1715, 16sseldd 3829 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ)
18 maxle 12311 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
196, 7, 17, 18syl3anc 1496 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
20 simpr 479 . . . . . . . . . . 11 ((𝑀𝑥𝑦𝑥) → 𝑦𝑥)
2119, 20syl6bi 245 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝑦𝑥))
2221imim1d 82 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚)))
23 lo1le.5 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2423adantlr 708 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2524adantrll 715 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶𝐵)
26 simpl 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝜑)
27 simplr 787 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥) → 𝑥𝐴)
28 lo1le.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2926, 27, 28syl2an 591 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶 ∈ ℝ)
308, 1lo1mptrcl 14730 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3126, 27, 30syl2an 591 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐵 ∈ ℝ)
32 simprll 799 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝑚 ∈ ℝ)
33 letr 10451 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3429, 31, 32, 33syl3anc 1496 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3525, 34mpand 688 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → (𝐵𝑚𝐶𝑚))
3635expr 450 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (𝑀𝑥 → (𝐵𝑚𝐶𝑚)))
3736adantrd 487 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑀𝑥𝑦𝑥) → (𝐵𝑚𝐶𝑚)))
3819, 37sylbid 232 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 → (𝐵𝑚𝐶𝑚)))
3938a2d 29 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4022, 39syld 47 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4140anassrs 461 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4241ralimdva 3172 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4342reximdva 3226 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
44 breq1 4877 . . . . . . . 8 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (𝑧𝑥 ↔ if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥))
4544imbi1d 333 . . . . . . 7 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → ((𝑧𝑥𝐶𝑚) ↔ (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4645rexralbidv 3269 . . . . . 6 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚) ↔ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4746rspcev 3527 . . . . 5 ((if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ ∧ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚))
485, 43, 47syl6an 676 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
4948rexlimdva 3241 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5014, 30ello1mpt 14630 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
5114, 28ello1mpt 14630 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5249, 50, 513imtr4d 286 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
531, 52mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wral 3118  wrex 3119  wss 3799  ifcif 4307   class class class wbr 4874  cmpt 4953  dom cdm 5343  cr 10252  cle 10393  ≤𝑂(1)clo1 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-pre-lttri 10327  ax-pre-lttrn 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-po 5264  df-so 5265  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-er 8010  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-ico 12470  df-lo1 14600
This theorem is referenced by:  o1le  14761  vmalogdivsum2  25641  pntrlog2bndlem1  25680  pntrlog2bndlem5  25684
  Copyright terms: Public domain W3C validator