Step | Hyp | Ref
| Expression |
1 | | lo1le.2 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
2 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
3 | | lo1le.1 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
4 | 3 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑀 ∈ ℝ) |
5 | 2, 4 | ifcld 4499 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ∈ ℝ) |
6 | 3 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → 𝑀 ∈ ℝ) |
7 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
8 | | lo1le.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
9 | 8 | ralrimiva 3106 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
10 | | dmmptg 6119 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
12 | | lo1dm 15104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
13 | 1, 12 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
14 | 11, 13 | eqsstrrd 3954 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
15 | 14 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → 𝐴 ⊆ ℝ) |
16 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
17 | 15, 16 | sseldd 3916 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
18 | | maxle 12805 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
19 | 6, 7, 17, 18 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
20 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑥) |
21 | 19, 20 | syl6bi 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝑦 ≤ 𝑥)) |
22 | 21 | imim1d 82 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
23 | | lo1le.5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) |
24 | 23 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) |
25 | 24 | adantrll 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) |
26 | | simpl 486 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝜑) |
27 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥) → 𝑥 ∈ 𝐴) |
28 | | lo1le.4 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
29 | 26, 27, 28 | syl2an 599 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥)) → 𝐶 ∈ ℝ) |
30 | 8, 1 | lo1mptrcl 15207 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
31 | 26, 27, 30 | syl2an 599 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥)) → 𝐵 ∈ ℝ) |
32 | | simprll 779 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥)) → 𝑚 ∈ ℝ) |
33 | | letr 10950 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚) → 𝐶 ≤ 𝑚)) |
34 | 29, 31, 32, 33 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥)) → ((𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚) → 𝐶 ≤ 𝑚)) |
35 | 25, 34 | mpand 695 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑀 ≤ 𝑥)) → (𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚)) |
36 | 35 | expr 460 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → (𝑀 ≤ 𝑥 → (𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚))) |
37 | 36 | adantrd 495 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → ((𝑀 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥) → (𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚))) |
38 | 19, 37 | sylbid 243 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → (𝐵 ≤ 𝑚 → 𝐶 ≤ 𝑚))) |
39 | 38 | a2d 29 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → ((if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐵 ≤ 𝑚) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
40 | 22, 39 | syld 47 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥 ∈ 𝐴)) → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
41 | 40 | anassrs 471 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
42 | 41 | ralimdva 3101 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → ∀𝑥 ∈ 𝐴 (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
43 | 42 | reximdva 3201 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
44 | | breq1 5070 |
. . . . . . . 8
⊢ (𝑧 = if(𝑀 ≤ 𝑦, 𝑦, 𝑀) → (𝑧 ≤ 𝑥 ↔ if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥)) |
45 | 44 | imbi1d 345 |
. . . . . . 7
⊢ (𝑧 = if(𝑀 ≤ 𝑦, 𝑦, 𝑀) → ((𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚) ↔ (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
46 | 45 | rexralbidv 3228 |
. . . . . 6
⊢ (𝑧 = if(𝑀 ≤ 𝑦, 𝑦, 𝑀) → (∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚) ↔ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
47 | 46 | rspcev 3549 |
. . . . 5
⊢
((if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ∈ ℝ ∧ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (if(𝑀 ≤ 𝑦, 𝑦, 𝑀) ≤ 𝑥 → 𝐶 ≤ 𝑚)) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚)) |
48 | 5, 43, 47 | syl6an 684 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
49 | 48 | rexlimdva 3211 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
50 | 14, 30 | ello1mpt 15106 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔
∃𝑦 ∈ ℝ
∃𝑚 ∈ ℝ
∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) |
51 | 14, 28 | ello1mpt 15106 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1) ↔
∃𝑧 ∈ ℝ
∃𝑚 ∈ ℝ
∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → 𝐶 ≤ 𝑚))) |
52 | 49, 50, 51 | 3imtr4d 297 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1))) |
53 | 1, 52 | mpd 15 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) |