| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr1.1 | ⊢ (𝜑 → 𝜒) |
| sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantrll 722 adantrlr 723 sbthlem9 9036 unfi 9112 pczpre 16794 cpmadugsumlemF 22739 blsscls2 24368 rpvmasumlem 27374 leopmuli 32035 chirredlem1 32292 chirredlem3 32294 pibt2 37378 mhpind 42555 dvconstbi 44296 bccbc 44307 reccot 49720 rectan 49721 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |