![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr1.1 | ⊢ (𝜑 → 𝜒) |
sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: adantrll 722 adantrlr 723 sbthlem9 9130 unfi 9210 pczpre 16881 cpmadugsumlemF 22898 blsscls2 24533 rpvmasumlem 27546 leopmuli 32162 chirredlem1 32419 chirredlem3 32421 pibt2 37400 mhpind 42581 dvconstbi 44330 bccbc 44341 reccot 48989 rectan 48990 aacllem 49032 |
Copyright terms: Public domain | W3C validator |