MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanr1 Structured version   Visualization version   GIF version

Theorem sylanr1 681
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr1.1 (𝜑𝜒)
sylanr1.2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
sylanr1 ((𝜓 ∧ (𝜑𝜃)) → 𝜏)

Proof of Theorem sylanr1
StepHypRef Expression
1 sylanr1.1 . . 3 (𝜑𝜒)
21anim1i 616 . 2 ((𝜑𝜃) → (𝜒𝜃))
3 sylanr1.2 . 2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
42, 3sylan2 594 1 ((𝜓 ∧ (𝜑𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  adantrll  721  adantrlr  722  sbthlem9  9091  unfi  9172  pczpre  16780  cpmadugsumlemF  22378  blsscls2  24013  rpvmasumlem  26990  leopmuli  31417  chirredlem1  31674  chirredlem3  31676  pibt2  36346  mhpind  41214  dvconstbi  43141  bccbc  43152  reccot  47851  rectan  47852  aacllem  47896
  Copyright terms: Public domain W3C validator