MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanr1 Structured version   Visualization version   GIF version

Theorem sylanr1 682
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr1.1 (𝜑𝜒)
sylanr1.2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
sylanr1 ((𝜓 ∧ (𝜑𝜃)) → 𝜏)

Proof of Theorem sylanr1
StepHypRef Expression
1 sylanr1.1 . . 3 (𝜑𝜒)
21anim1i 615 . 2 ((𝜑𝜃) → (𝜒𝜃))
3 sylanr1.2 . 2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
42, 3sylan2 593 1 ((𝜓 ∧ (𝜑𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  adantrll  722  adantrlr  723  sbthlem9  9036  unfi  9112  pczpre  16794  cpmadugsumlemF  22739  blsscls2  24368  rpvmasumlem  27374  leopmuli  32035  chirredlem1  32292  chirredlem3  32294  pibt2  37378  mhpind  42555  dvconstbi  44296  bccbc  44307  reccot  49720  rectan  49721  aacllem  49763
  Copyright terms: Public domain W3C validator