| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr1.1 | ⊢ (𝜑 → 𝜒) |
| sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantrll 722 adantrlr 723 sbthlem9 9059 unfi 9135 pczpre 16818 cpmadugsumlemF 22763 blsscls2 24392 rpvmasumlem 27398 leopmuli 32062 chirredlem1 32319 chirredlem3 32321 pibt2 37405 mhpind 42582 dvconstbi 44323 bccbc 44334 reccot 49747 rectan 49748 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |