Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr1.1 | ⊢ (𝜑 → 𝜒) |
sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: adantrll 719 adantrlr 720 sbthlem9 8878 unfi 8955 pczpre 16548 cpmadugsumlemF 22025 blsscls2 23660 rpvmasumlem 26635 leopmuli 30495 chirredlem1 30752 chirredlem3 30754 pibt2 35588 mhpind 40283 dvconstbi 41952 bccbc 41963 reccot 46460 rectan 46461 aacllem 46505 |
Copyright terms: Public domain | W3C validator |