| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr1.1 | ⊢ (𝜑 → 𝜒) |
| sylanr1.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr1 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr1.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantrll 722 adantrlr 723 sbthlem9 9065 unfi 9141 pczpre 16825 cpmadugsumlemF 22770 blsscls2 24399 rpvmasumlem 27405 leopmuli 32069 chirredlem1 32326 chirredlem3 32328 pibt2 37412 mhpind 42589 dvconstbi 44330 bccbc 44341 reccot 49751 rectan 49752 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |