 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aeveq Structured version   Visualization version   GIF version

Theorem aeveq 2158
 Description: The antecedent ∀𝑥𝑥 = 𝑦 with a disjoint variable condition (typical of a one-object universe) forces equality of everything. (Contributed by Wolf Lammen, 19-Mar-2021.)
Assertion
Ref Expression
aeveq (∀𝑥 𝑥 = 𝑦𝑧 = 𝑡)
Distinct variable group:   𝑥,𝑦

Proof of Theorem aeveq
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 aevlem 2157 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑢 𝑢 = 𝑧)
2 ax6ev 2079 . . 3 𝑢 𝑢 = 𝑡
3 ax7 2122 . . . 4 (𝑢 = 𝑧 → (𝑢 = 𝑡𝑧 = 𝑡))
43aleximi 1932 . . 3 (∀𝑢 𝑢 = 𝑧 → (∃𝑢 𝑢 = 𝑡 → ∃𝑢 𝑧 = 𝑡))
52, 4mpi 20 . 2 (∀𝑢 𝑢 = 𝑧 → ∃𝑢 𝑧 = 𝑡)
6 ax5e 2013 . 2 (∃𝑢 𝑧 = 𝑡𝑧 = 𝑡)
71, 5, 63syl 18 1 (∀𝑥 𝑥 = 𝑦𝑧 = 𝑡)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1656  ∃wex 1880 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881 This theorem is referenced by:  aev  2159  2ax6e  2585  aevdemo  27876  wl-moteq  33843  wl-spae  33853
 Copyright terms: Public domain W3C validator