MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimdd Structured version   Visualization version   GIF version

Theorem alrimdd 2249
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2241. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
alrimdd.1 𝑥𝜑
alrimdd.2 (𝜑 → Ⅎ𝑥𝜓)
alrimdd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
alrimdd (𝜑 → (𝜓 → ∀𝑥𝜒))

Proof of Theorem alrimdd
StepHypRef Expression
1 alrimdd.2 . . 3 (𝜑 → Ⅎ𝑥𝜓)
21nf5rd 2230 . 2 (𝜑 → (𝜓 → ∀𝑥𝜓))
3 alrimdd.1 . . 3 𝑥𝜑
4 alrimdd.3 . . 3 (𝜑 → (𝜓𝜒))
53, 4alimd 2247 . 2 (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
62, 5syld 47 1 (𝜑 → (𝜓 → ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1651  wnf 1879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-12 2213
This theorem depends on definitions:  df-bi 199  df-ex 1876  df-nf 1880
This theorem is referenced by:  alrimd  2250  wl-euequf  33846
  Copyright terms: Public domain W3C validator