Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-euequf | Structured version Visualization version GIF version |
Description: euequ 2597 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
Ref | Expression |
---|---|
wl-euequf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1974 | . . 3 ⊢ ∃𝑧 𝑧 = 𝑦 | |
2 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
3 | nfna1 2151 | . . . . 5 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
4 | nfeqf2 2377 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
5 | equequ2 2030 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
6 | 5 | equcoms 2024 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
8 | 3, 4, 7 | alrimdd 2210 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
9 | 2, 8 | eximd 2212 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
10 | 1, 9 | mpi 20 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
11 | eu6 2574 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |