| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-euequf | Structured version Visualization version GIF version | ||
| Description: euequ 2597 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.) |
| Ref | Expression |
|---|---|
| wl-euequf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1969 | . . 3 ⊢ ∃𝑧 𝑧 = 𝑦 | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 3 | nfna1 2152 | . . . . 5 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 4 | nfeqf2 2382 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
| 5 | equequ2 2025 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
| 6 | 5 | equcoms 2019 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
| 8 | 3, 4, 7 | alrimdd 2214 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
| 9 | 2, 8 | eximd 2216 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧))) |
| 10 | 1, 9 | mpi 20 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 11 | eu6 2574 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑦 ↔ ∃𝑧∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
| 12 | 10, 11 | sylibr 234 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |