Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1814. See alimdh 1821, alimdv 1920 for variants requiring fewer axioms. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alimd.1 | ⊢ Ⅎ𝑥𝜑 |
alimd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimd | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2191 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alimd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | alimdh 1821 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: alrimdd 2210 nfald 2326 mo3 2564 2mo 2650 axpowndlem3 10286 axextbdist 33682 pm11.71 41904 |
Copyright terms: Public domain | W3C validator |