| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alsi-no-surprise | Structured version Visualization version GIF version | ||
| Description: Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi 49307; the proof itself builds on alimp-no-surprise 49300. For a contrast, see alimp-surprise 49299. (Contributed by David A. Wheeler, 27-Oct-2018.) |
| Ref | Expression |
|---|---|
| alsi-no-surprise | ⊢ ¬ (∀!𝑥(𝜑 → 𝜓) ∧ ∀!𝑥(𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimp-no-surprise 49300 | . 2 ⊢ ¬ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜑 → ¬ 𝜓) ∧ ∃𝑥𝜑) | |
| 2 | df-alsi 49307 | . . . 4 ⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) | |
| 3 | df-alsi 49307 | . . . 4 ⊢ (∀!𝑥(𝜑 → ¬ 𝜓) ↔ (∀𝑥(𝜑 → ¬ 𝜓) ∧ ∃𝑥𝜑)) | |
| 4 | 2, 3 | anbi12i 628 | . . 3 ⊢ ((∀!𝑥(𝜑 → 𝜓) ∧ ∀!𝑥(𝜑 → ¬ 𝜓)) ↔ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑) ∧ (∀𝑥(𝜑 → ¬ 𝜓) ∧ ∃𝑥𝜑))) |
| 5 | anandi3r 1103 | . . 3 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑 ∧ ∀𝑥(𝜑 → ¬ 𝜓)) ↔ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑) ∧ (∀𝑥(𝜑 → ¬ 𝜓) ∧ ∃𝑥𝜑))) | |
| 6 | 3ancomb 1099 | . . 3 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑 ∧ ∀𝑥(𝜑 → ¬ 𝜓)) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜑 → ¬ 𝜓) ∧ ∃𝑥𝜑)) | |
| 7 | 4, 5, 6 | 3bitr2i 299 | . 2 ⊢ ((∀!𝑥(𝜑 → 𝜓) ∧ ∀!𝑥(𝜑 → ¬ 𝜓)) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜑 → ¬ 𝜓) ∧ ∃𝑥𝜑)) |
| 8 | 1, 7 | mtbir 323 | 1 ⊢ ¬ (∀!𝑥(𝜑 → 𝜓) ∧ ∀!𝑥(𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 ∃wex 1779 ∀!walsi 49305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-alsi 49307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |