Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unqsym1 | Structured version Visualization version GIF version |
Description: A symmetry with ∃!.
See negsym1 34533 for more information. (Contributed by Anthony Hart, 6-Sep-2011.) |
Ref | Expression |
---|---|
unqsym1 | ⊢ (∃!𝑥∃!𝑥⊥ → ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neufal 34522 | . . . 4 ⊢ ¬ ∃!𝑥⊥ | |
2 | 1 | nex 1804 | . . 3 ⊢ ¬ ∃𝑥∃!𝑥⊥ |
3 | euex 2577 | . . 3 ⊢ (∃!𝑥∃!𝑥⊥ → ∃𝑥∃!𝑥⊥) | |
4 | 2, 3 | mto 196 | . 2 ⊢ ¬ ∃!𝑥∃!𝑥⊥ |
5 | 4 | pm2.21i 119 | 1 ⊢ (∃!𝑥∃!𝑥⊥ → ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1551 ∃wex 1783 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |