Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsym1 Structured version   Visualization version   GIF version

Theorem subsym1 34543
Description: A symmetry with [𝑥 / 𝑦].

See negsym1 34533 for more information. (Contributed by Anthony Hart, 11-Sep-2011.)

Assertion
Ref Expression
subsym1 ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑)

Proof of Theorem subsym1
StepHypRef Expression
1 fal 1553 . . . . . . . . . 10 ¬ ⊥
21intnan 486 . . . . . . . . 9 ¬ (𝑥 = 𝑦 ∧ ⊥)
32nex 1804 . . . . . . . 8 ¬ ∃𝑥(𝑥 = 𝑦 ∧ ⊥)
43intnan 486 . . . . . . 7 ¬ ((𝑥 = 𝑦 → ⊥) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ⊥))
5 dfsb1 2485 . . . . . . 7 ([𝑦 / 𝑥]⊥ ↔ ((𝑥 = 𝑦 → ⊥) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ⊥)))
64, 5mtbir 322 . . . . . 6 ¬ [𝑦 / 𝑥]⊥
76intnan 486 . . . . 5 ¬ (𝑥 = 𝑦 ∧ [𝑦 / 𝑥]⊥)
87nex 1804 . . . 4 ¬ ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]⊥)
98intnan 486 . . 3 ¬ ((𝑥 = 𝑦 → [𝑦 / 𝑥]⊥) ∧ ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]⊥))
10 dfsb1 2485 . . 3 ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ ↔ ((𝑥 = 𝑦 → [𝑦 / 𝑥]⊥) ∧ ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]⊥)))
119, 10mtbir 322 . 2 ¬ [𝑦 / 𝑥][𝑦 / 𝑥]⊥
1211pm2.21i 119 1 ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wfal 1551  wex 1783  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator