|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subsym1 | Structured version Visualization version GIF version | ||
| Description: A symmetry with [𝑥 / 𝑦]. See negsym1 36419 for more information. (Contributed by Anthony Hart, 11-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| subsym1 | ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbv 2087 | . . 3 ⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) | |
| 2 | falim 1556 | . . 3 ⊢ (⊥ → 𝜑) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ ([𝑦 / 𝑥]⊥ → 𝜑) | 
| 4 | 3 | sbimi 2073 | 1 ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊥wfal 1551 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |