Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subsym1 | Structured version Visualization version GIF version |
Description: A symmetry with [𝑥 / 𝑦].
See negsym1 34697 for more information. (Contributed by Anthony Hart, 11-Sep-2011.) |
Ref | Expression |
---|---|
subsym1 | ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbv 2090 | . . 3 ⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) | |
2 | falim 1557 | . . 3 ⊢ (⊥ → 𝜑) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ ([𝑦 / 𝑥]⊥ → 𝜑) |
4 | 3 | sbimi 2076 | 1 ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1552 [wsb 2066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 |
This theorem depends on definitions: df-bi 206 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |