| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subsym1 | Structured version Visualization version GIF version | ||
| Description: A symmetry with [𝑥 / 𝑦].
See negsym1 36457 for more information. (Contributed by Anthony Hart, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| subsym1 | ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbv 2091 | . . 3 ⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) | |
| 2 | falim 1558 | . . 3 ⊢ (⊥ → 𝜑) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ ([𝑦 / 𝑥]⊥ → 𝜑) |
| 4 | 3 | sbimi 2077 | 1 ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1553 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |