Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsym1 Structured version   Visualization version   GIF version

Theorem subsym1 36393
Description: A symmetry with [𝑥 / 𝑦].

See negsym1 36383 for more information. (Contributed by Anthony Hart, 11-Sep-2011.)

Assertion
Ref Expression
subsym1 ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑)

Proof of Theorem subsym1
StepHypRef Expression
1 sbv 2088 . . 3 ([𝑦 / 𝑥]⊥ ↔ ⊥)
2 falim 1554 . . 3 (⊥ → 𝜑)
31, 2sylbi 217 . 2 ([𝑦 / 𝑥]⊥ → 𝜑)
43sbimi 2074 1 ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1549  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator