Proof of Theorem poprelb
Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . 3
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
2 | | an3 655 |
. . . . 5
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → (Rel 𝑅 ∧ 𝐶𝑅𝐷)) |
3 | 2 | 3adant2 1129 |
. . . 4
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → (Rel 𝑅 ∧ 𝐶𝑅𝐷)) |
4 | | brrelex12 5630 |
. . . 4
⊢ ((Rel
𝑅 ∧ 𝐶𝑅𝐷) → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
6 | | preq12bg 4781 |
. . 3
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
7 | 1, 5, 6 | syl2anc 583 |
. 2
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
8 | | idd 24 |
. . . 4
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
9 | | breq12 5075 |
. . . . . . . . . . 11
⊢ ((𝐵 = 𝐶 ∧ 𝐴 = 𝐷) → (𝐵𝑅𝐴 ↔ 𝐶𝑅𝐷)) |
10 | 9 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐵𝑅𝐴 ↔ 𝐶𝑅𝐷)) |
11 | 10 | bicomd 222 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐶𝑅𝐷 ↔ 𝐵𝑅𝐴)) |
12 | 11 | anbi2d 628 |
. . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴))) |
13 | | po2nr 5508 |
. . . . . . . . . . . 12
⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴)) |
14 | 13 | adantll 710 |
. . . . . . . . . . 11
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴)) |
15 | 14 | pm2.21d 121 |
. . . . . . . . . 10
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
16 | 15 | ex 412 |
. . . . . . . . 9
⊢ ((Rel
𝑅 ∧ 𝑅 Po 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
17 | 16 | com13 88 |
. . . . . . . 8
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((Rel 𝑅 ∧ 𝑅 Po 𝑋) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
18 | 12, 17 | syl6bi 252 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((Rel 𝑅 ∧ 𝑅 Po 𝑋) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))))) |
19 | 18 | com23 86 |
. . . . . 6
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷) → ((Rel 𝑅 ∧ 𝑅 Po 𝑋) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))))) |
20 | 19 | com14 96 |
. . . . 5
⊢ ((Rel
𝑅 ∧ 𝑅 Po 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷) → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))))) |
21 | 20 | 3imp 1109 |
. . . 4
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
22 | 8, 21 | jaod 855 |
. . 3
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
23 | | orc 863 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
24 | 22, 23 | impbid1 224 |
. 2
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
25 | 7, 24 | bitrd 278 |
1
⊢ (((Rel
𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |