Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poprelb Structured version   Visualization version   GIF version

Theorem poprelb 44976
Description: Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023.)
Assertion
Ref Expression
poprelb (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem poprelb
StepHypRef Expression
1 simp2 1136 . . 3 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → (𝐴𝑋𝐵𝑋))
2 an3 656 . . . . 5 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → (Rel 𝑅𝐶𝑅𝐷))
323adant2 1130 . . . 4 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → (Rel 𝑅𝐶𝑅𝐷))
4 brrelex12 5639 . . . 4 ((Rel 𝑅𝐶𝑅𝐷) → (𝐶 ∈ V ∧ 𝐷 ∈ V))
53, 4syl 17 . . 3 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → (𝐶 ∈ V ∧ 𝐷 ∈ V))
6 preq12bg 4784 . . 3 (((𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
71, 5, 6syl2anc 584 . 2 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
8 idd 24 . . . 4 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
9 breq12 5079 . . . . . . . . . . 11 ((𝐵 = 𝐶𝐴 = 𝐷) → (𝐵𝑅𝐴𝐶𝑅𝐷))
109ancoms 459 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐵𝑅𝐴𝐶𝑅𝐷))
1110bicomd 222 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐶𝑅𝐷𝐵𝑅𝐴))
1211anbi2d 629 . . . . . . . 8 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝑅𝐵𝐶𝑅𝐷) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
13 po2nr 5517 . . . . . . . . . . . 12 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴))
1413adantll 711 . . . . . . . . . . 11 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ¬ (𝐴𝑅𝐵𝐵𝑅𝐴))
1514pm2.21d 121 . . . . . . . . . 10 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝑅𝐵𝐵𝑅𝐴) → (𝐴 = 𝐶𝐵 = 𝐷)))
1615ex 413 . . . . . . . . 9 ((Rel 𝑅𝑅 Po 𝑋) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝑅𝐵𝐵𝑅𝐴) → (𝐴 = 𝐶𝐵 = 𝐷))))
1716com13 88 . . . . . . . 8 ((𝐴𝑅𝐵𝐵𝑅𝐴) → ((𝐴𝑋𝐵𝑋) → ((Rel 𝑅𝑅 Po 𝑋) → (𝐴 = 𝐶𝐵 = 𝐷))))
1812, 17syl6bi 252 . . . . . . 7 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝑅𝐵𝐶𝑅𝐷) → ((𝐴𝑋𝐵𝑋) → ((Rel 𝑅𝑅 Po 𝑋) → (𝐴 = 𝐶𝐵 = 𝐷)))))
1918com23 86 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝑅𝐵𝐶𝑅𝐷) → ((Rel 𝑅𝑅 Po 𝑋) → (𝐴 = 𝐶𝐵 = 𝐷)))))
2019com14 96 . . . . 5 ((Rel 𝑅𝑅 Po 𝑋) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝑅𝐵𝐶𝑅𝐷) → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷)))))
21203imp 1110 . . . 4 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷)))
228, 21jaod 856 . . 3 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → (𝐴 = 𝐶𝐵 = 𝐷)))
23 orc 864 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
2422, 23impbid1 224 . 2 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
257, 24bitrd 278 1 (((Rel 𝑅𝑅 Po 𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑅𝐵𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  {cpr 4563   class class class wbr 5074   Po wpo 5501  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-po 5503  df-xp 5595  df-rel 5596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator