| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2373 nfeqf 2379 frminex 5610 trin2 6084 funprg 6554 funcnvqp 6564 fnun 6614 2elresin 6621 f1cof1 6748 f1oun 6801 f1oco 6805 fvreseq0 6992 f1mpt 7218 poxp 8084 soxp 8085 poseq 8114 wfr3g 8275 tfrlem7 8328 oeoe 8540 brecop 8760 pmss12g 8819 dif1ennnALT 9198 fiin 9349 tcmin 9670 frr3g 9685 harval2 9926 genpv 10928 genpdm 10931 genpnnp 10934 genpcd 10935 genpnmax 10936 addcmpblnr 10998 ltsrpr 11006 addclsr 11012 mulclsr 11013 addasssr 11017 mulasssr 11019 distrsr 11020 mulgt0sr 11034 addresr 11067 mulresr 11068 axaddf 11074 axmulf 11075 axaddass 11085 axmulass 11086 axdistr 11087 mulgt0 11227 mul4 11318 add4 11371 2addsub 11411 addsubeq4 11412 sub4 11443 muladd 11586 mulsub 11597 mulge0 11672 add20i 11697 mulge0i 11701 mulne0 11796 divmuldiv 11858 rec11i 11899 ltmul12a 12014 mulge0b 12029 zmulcl 12558 uz2mulcl 12861 qaddcl 12900 qmulcl 12902 qreccl 12904 rpaddcl 12951 xmulgt0 13219 xmulge0 13220 ixxin 13299 ge0addcl 13397 ge0xaddcl 13399 fzadd2 13496 serge0 13997 expge1 14040 sqrmo 15193 rexanuz 15288 amgm2 15312 bhmafibid1cn 15408 bhmafibid2cn 15409 mulcn2 15538 dvds2ln 16235 opoe 16309 omoe 16310 opeo 16311 omeo 16312 divalglem6 16344 divalglem8 16346 lcmcllem 16542 lcmgcd 16553 lcmdvds 16554 pc2dvds 16826 catpropd 17650 gimco 19182 efgrelexlemb 19664 psgnghm 21522 pf1ind 22275 tgcl 22889 innei 23045 iunconnlem 23347 txbas 23487 txss12 23525 txbasval 23526 tx1stc 23570 fbunfip 23789 tsmsxp 24075 blsscls2 24425 bddnghm 24647 qtopbaslem 24679 iimulcl 24866 icoopnst 24869 iocopnst 24870 iccpnfcnv 24875 mumullem2 27123 fsumvma 27157 lgslem3 27243 pntrsumbnd2 27511 mulsuniflem 28092 readdscl 28403 remulscllem2 28405 remulscl 28406 ajmoi 30837 hvadd4 31015 hvsub4 31016 shsel3 31294 shscli 31296 shscom 31298 chj4 31514 5oalem3 31635 5oalem5 31637 5oalem6 31638 hoadd4 31763 adjmo 31811 adjsym 31812 cnvadj 31871 leopmuli 32112 mdslmd1lem2 32305 chirredlem2 32370 chirredi 32373 cdjreui 32411 addltmulALT 32425 reofld 33308 xrge0iifcnv 33916 funtransport 36012 btwnconn1lem13 36080 btwnconn1lem14 36081 outsideofeu 36112 outsidele 36113 funray 36121 lineintmo 36138 bj-nnfan 36729 bj-nnfor 36731 icoreclin 37338 poimirlem27 37634 heicant 37642 itg2gt0cn 37662 bndss 37773 isdrngo3 37946 riscer 37975 intidl 38016 rimco 42499 unxpwdom3 43077 gbegt5 47755 |
| Copyright terms: Public domain | W3C validator |