![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 655 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: an42s 660 anandis 677 anandirs 678 ax13 2375 nfeqf 2381 frminex 5657 trin2 6125 funprg 6603 funcnvqp 6613 fnun 6664 2elresin 6672 f1cof1 6799 f1coOLD 6801 f1oun 6853 f1oco 6857 fvreseq0 7040 f1mpt 7260 poxp 8114 soxp 8115 poseq 8144 wfr3g 8307 wfrfunOLD 8319 tfrlem7 8383 oeoe 8599 brecop 8804 pmss12g 8863 dif1ennnALT 9277 fiin 9417 tcmin 9736 frr3g 9751 harval2 9992 genpv 10994 genpdm 10997 genpnnp 11000 genpcd 11001 genpnmax 11002 addcmpblnr 11064 ltsrpr 11072 addclsr 11078 mulclsr 11079 addasssr 11083 mulasssr 11085 distrsr 11086 mulgt0sr 11100 addresr 11133 mulresr 11134 axaddf 11140 axmulf 11141 axaddass 11151 axmulass 11152 axdistr 11153 mulgt0 11291 mul4 11382 add4 11434 2addsub 11474 addsubeq4 11475 sub4 11505 muladd 11646 mulsub 11657 mulge0 11732 add20i 11757 mulge0i 11761 mulne0 11856 divmuldiv 11914 rec11i 11955 ltmul12a 12070 mulge0b 12084 zmulcl 12611 uz2mulcl 12910 qaddcl 12949 qmulcl 12951 qreccl 12953 rpaddcl 12996 xmulgt0 13262 xmulge0 13263 ixxin 13341 ge0addcl 13437 ge0xaddcl 13439 fzadd2 13536 serge0 14022 expge1 14065 sqrmo 15198 rexanuz 15292 amgm2 15316 bhmafibid1cn 15410 bhmafibid2cn 15411 mulcn2 15540 dvds2ln 16232 opoe 16306 omoe 16307 opeo 16308 omeo 16309 divalglem6 16341 divalglem8 16343 lcmcllem 16533 lcmgcd 16544 lcmdvds 16545 pc2dvds 16812 catpropd 17653 gimco 19142 efgrelexlemb 19618 psgnghm 21133 pf1ind 21874 tgcl 22472 innei 22629 iunconnlem 22931 txbas 23071 txss12 23109 txbasval 23110 tx1stc 23154 fbunfip 23373 tsmsxp 23659 blsscls2 24013 bddnghm 24243 qtopbaslem 24275 iimulcl 24453 icoopnst 24455 iocopnst 24456 iccpnfcnv 24460 mumullem2 26684 fsumvma 26716 lgslem3 26802 pntrsumbnd2 27070 mulsuniflem 27604 ajmoi 30111 hvadd4 30289 hvsub4 30290 shsel3 30568 shscli 30570 shscom 30572 chj4 30788 5oalem3 30909 5oalem5 30911 5oalem6 30912 hoadd4 31037 adjmo 31085 adjsym 31086 cnvadj 31145 leopmuli 31386 mdslmd1lem2 31579 chirredlem2 31644 chirredi 31647 cdjreui 31685 addltmulALT 31699 reofld 32459 xrge0iifcnv 32913 funtransport 35003 btwnconn1lem13 35071 btwnconn1lem14 35072 outsideofeu 35103 outsidele 35104 funray 35112 lineintmo 35129 bj-nnfan 35626 bj-nnfor 35628 icoreclin 36238 poimirlem27 36515 heicant 36523 itg2gt0cn 36543 bndss 36654 isdrngo3 36827 riscer 36856 intidl 36897 rimco 41093 unxpwdom3 41837 gbegt5 46429 |
Copyright terms: Public domain | W3C validator |