| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2373 nfeqf 2379 frminex 5598 trin2 6072 funprg 6536 funcnvqp 6546 fnun 6596 2elresin 6603 f1cof1 6730 f1oun 6783 f1oco 6787 fvreseq0 6972 f1mpt 7198 poxp 8061 soxp 8062 poseq 8091 wfr3g 8252 tfrlem7 8305 oeoe 8517 brecop 8737 pmss12g 8796 dif1ennnALT 9166 fiin 9312 tcmin 9637 frr3g 9652 harval2 9893 genpv 10893 genpdm 10896 genpnnp 10899 genpcd 10900 genpnmax 10901 addcmpblnr 10963 ltsrpr 10971 addclsr 10977 mulclsr 10978 addasssr 10982 mulasssr 10984 distrsr 10985 mulgt0sr 10999 addresr 11032 mulresr 11033 axaddf 11039 axmulf 11040 axaddass 11050 axmulass 11051 axdistr 11052 mulgt0 11193 mul4 11284 add4 11337 2addsub 11377 addsubeq4 11378 sub4 11409 muladd 11552 mulsub 11563 mulge0 11638 add20i 11663 mulge0i 11667 mulne0 11762 divmuldiv 11824 rec11i 11865 ltmul12a 11980 mulge0b 11995 zmulcl 12524 uz2mulcl 12827 qaddcl 12866 qmulcl 12868 qreccl 12870 rpaddcl 12917 xmulgt0 13185 xmulge0 13186 ixxin 13265 ge0addcl 13363 ge0xaddcl 13365 fzadd2 13462 serge0 13963 expge1 14006 sqrmo 15158 rexanuz 15253 amgm2 15277 bhmafibid1cn 15373 bhmafibid2cn 15374 mulcn2 15503 dvds2ln 16200 opoe 16274 omoe 16275 opeo 16276 omeo 16277 divalglem6 16309 divalglem8 16311 lcmcllem 16507 lcmgcd 16518 lcmdvds 16519 pc2dvds 16791 catpropd 17615 gimco 19147 efgrelexlemb 19629 psgnghm 21487 pf1ind 22240 tgcl 22854 innei 23010 iunconnlem 23312 txbas 23452 txss12 23490 txbasval 23491 tx1stc 23535 fbunfip 23754 tsmsxp 24040 blsscls2 24390 bddnghm 24612 qtopbaslem 24644 iimulcl 24831 icoopnst 24834 iocopnst 24835 iccpnfcnv 24840 mumullem2 27088 fsumvma 27122 lgslem3 27208 pntrsumbnd2 27476 mulsuniflem 28057 readdscl 28368 remulscllem2 28370 remulscl 28371 ajmoi 30802 hvadd4 30980 hvsub4 30981 shsel3 31259 shscli 31261 shscom 31263 chj4 31479 5oalem3 31600 5oalem5 31602 5oalem6 31603 hoadd4 31728 adjmo 31776 adjsym 31777 cnvadj 31836 leopmuli 32077 mdslmd1lem2 32270 chirredlem2 32335 chirredi 32338 cdjreui 32376 addltmulALT 32390 reofld 33281 xrge0iifcnv 33900 funtransport 36009 btwnconn1lem13 36077 btwnconn1lem14 36078 outsideofeu 36109 outsidele 36110 funray 36118 lineintmo 36135 bj-nnfan 36726 bj-nnfor 36728 icoreclin 37335 poimirlem27 37631 heicant 37639 itg2gt0cn 37659 bndss 37770 isdrngo3 37943 riscer 37972 intidl 38013 rimco 42495 unxpwdom3 43072 gbegt5 47749 |
| Copyright terms: Public domain | W3C validator |