Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 652 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an42s 657 anandis 674 anandirs 675 ax13 2375 nfeqf 2381 frminex 5560 trin2 6017 funprg 6472 funcnvqp 6482 fnun 6529 2elresin 6537 f1cof1 6665 f1coOLD 6667 f1oun 6719 f1oco 6722 fvreseq0 6897 f1mpt 7115 poxp 7940 soxp 7941 wfr3g 8109 wfrfunOLD 8121 tfrlem7 8185 oeoe 8392 brecop 8557 pmss12g 8615 dif1enALT 8980 fiin 9111 tcmin 9430 frr3g 9445 harval2 9686 genpv 10686 genpdm 10689 genpnnp 10692 genpcd 10693 genpnmax 10694 addcmpblnr 10756 ltsrpr 10764 addclsr 10770 mulclsr 10771 addasssr 10775 mulasssr 10777 distrsr 10778 mulgt0sr 10792 addresr 10825 mulresr 10826 axaddf 10832 axmulf 10833 axaddass 10843 axmulass 10844 axdistr 10845 mulgt0 10983 mul4 11073 add4 11125 2addsub 11165 addsubeq4 11166 sub4 11196 muladd 11337 mulsub 11348 mulge0 11423 add20i 11448 mulge0i 11452 mulne0 11547 divmuldiv 11605 rec11i 11646 ltmul12a 11761 mulge0b 11775 zmulcl 12299 uz2mulcl 12595 qaddcl 12634 qmulcl 12636 qreccl 12638 rpaddcl 12681 xmulgt0 12946 xmulge0 12947 ixxin 13025 ge0addcl 13121 ge0xaddcl 13123 fzadd2 13220 serge0 13705 expge1 13748 sqrmo 14891 rexanuz 14985 amgm2 15009 bhmafibid1cn 15103 bhmafibid2cn 15104 mulcn2 15233 dvds2ln 15926 opoe 16000 omoe 16001 opeo 16002 omeo 16003 divalglem6 16035 divalglem8 16037 lcmcllem 16229 lcmgcd 16240 lcmdvds 16241 pc2dvds 16508 catpropd 17335 gimco 18799 efgrelexlemb 19271 psgnghm 20697 pf1ind 21431 tgcl 22027 innei 22184 iunconnlem 22486 txbas 22626 txss12 22664 txbasval 22665 tx1stc 22709 fbunfip 22928 tsmsxp 23214 blsscls2 23566 bddnghm 23796 qtopbaslem 23828 iimulcl 24006 icoopnst 24008 iocopnst 24009 iccpnfcnv 24013 mumullem2 26234 fsumvma 26266 lgslem3 26352 pntrsumbnd2 26620 ajmoi 29121 hvadd4 29299 hvsub4 29300 shsel3 29578 shscli 29580 shscom 29582 chj4 29798 5oalem3 29919 5oalem5 29921 5oalem6 29922 hoadd4 30047 adjmo 30095 adjsym 30096 cnvadj 30155 leopmuli 30396 mdslmd1lem2 30589 chirredlem2 30654 chirredi 30657 cdjreui 30695 addltmulALT 30709 reofld 31446 xrge0iifcnv 31785 poseq 33729 funtransport 34260 btwnconn1lem13 34328 btwnconn1lem14 34329 outsideofeu 34360 outsidele 34361 funray 34369 lineintmo 34386 bj-nnfan 34857 bj-nnfor 34859 icoreclin 35455 poimirlem27 35731 heicant 35739 itg2gt0cn 35759 bndss 35871 isdrngo3 36044 riscer 36073 intidl 36114 unxpwdom3 40836 gbegt5 45101 |
Copyright terms: Public domain | W3C validator |