| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2374 nfeqf 2380 frminex 5620 trin2 6099 funprg 6573 funcnvqp 6583 fnun 6635 2elresin 6642 f1cof1 6769 f1oun 6822 f1oco 6826 fvreseq0 7013 f1mpt 7239 poxp 8110 soxp 8111 poseq 8140 wfr3g 8301 tfrlem7 8354 oeoe 8566 brecop 8786 pmss12g 8845 dif1ennnALT 9229 fiin 9380 tcmin 9701 frr3g 9716 harval2 9957 genpv 10959 genpdm 10962 genpnnp 10965 genpcd 10966 genpnmax 10967 addcmpblnr 11029 ltsrpr 11037 addclsr 11043 mulclsr 11044 addasssr 11048 mulasssr 11050 distrsr 11051 mulgt0sr 11065 addresr 11098 mulresr 11099 axaddf 11105 axmulf 11106 axaddass 11116 axmulass 11117 axdistr 11118 mulgt0 11258 mul4 11349 add4 11402 2addsub 11442 addsubeq4 11443 sub4 11474 muladd 11617 mulsub 11628 mulge0 11703 add20i 11728 mulge0i 11732 mulne0 11827 divmuldiv 11889 rec11i 11930 ltmul12a 12045 mulge0b 12060 zmulcl 12589 uz2mulcl 12892 qaddcl 12931 qmulcl 12933 qreccl 12935 rpaddcl 12982 xmulgt0 13250 xmulge0 13251 ixxin 13330 ge0addcl 13428 ge0xaddcl 13430 fzadd2 13527 serge0 14028 expge1 14071 sqrmo 15224 rexanuz 15319 amgm2 15343 bhmafibid1cn 15439 bhmafibid2cn 15440 mulcn2 15569 dvds2ln 16266 opoe 16340 omoe 16341 opeo 16342 omeo 16343 divalglem6 16375 divalglem8 16377 lcmcllem 16573 lcmgcd 16584 lcmdvds 16585 pc2dvds 16857 catpropd 17677 gimco 19207 efgrelexlemb 19687 psgnghm 21496 pf1ind 22249 tgcl 22863 innei 23019 iunconnlem 23321 txbas 23461 txss12 23499 txbasval 23500 tx1stc 23544 fbunfip 23763 tsmsxp 24049 blsscls2 24399 bddnghm 24621 qtopbaslem 24653 iimulcl 24840 icoopnst 24843 iocopnst 24844 iccpnfcnv 24849 mumullem2 27097 fsumvma 27131 lgslem3 27217 pntrsumbnd2 27485 mulsuniflem 28059 readdscl 28357 remulscllem2 28359 remulscl 28360 ajmoi 30794 hvadd4 30972 hvsub4 30973 shsel3 31251 shscli 31253 shscom 31255 chj4 31471 5oalem3 31592 5oalem5 31594 5oalem6 31595 hoadd4 31720 adjmo 31768 adjsym 31769 cnvadj 31828 leopmuli 32069 mdslmd1lem2 32262 chirredlem2 32327 chirredi 32330 cdjreui 32368 addltmulALT 32382 reofld 33322 xrge0iifcnv 33930 funtransport 36026 btwnconn1lem13 36094 btwnconn1lem14 36095 outsideofeu 36126 outsidele 36127 funray 36135 lineintmo 36152 bj-nnfan 36743 bj-nnfor 36745 icoreclin 37352 poimirlem27 37648 heicant 37656 itg2gt0cn 37676 bndss 37787 isdrngo3 37960 riscer 37989 intidl 38030 rimco 42513 unxpwdom3 43091 gbegt5 47766 |
| Copyright terms: Public domain | W3C validator |