![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 655 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an42s 660 anandis 677 anandirs 678 ax13 2383 nfeqf 2389 frminex 5679 trin2 6155 funprg 6632 funcnvqp 6642 fnun 6693 2elresin 6701 f1cof1 6827 f1coOLD 6829 f1oun 6881 f1oco 6885 fvreseq0 7071 f1mpt 7298 poxp 8169 soxp 8170 poseq 8199 wfr3g 8363 wfrfunOLD 8375 tfrlem7 8439 oeoe 8655 brecop 8868 pmss12g 8927 dif1ennnALT 9339 fiin 9491 tcmin 9810 frr3g 9825 harval2 10066 genpv 11068 genpdm 11071 genpnnp 11074 genpcd 11075 genpnmax 11076 addcmpblnr 11138 ltsrpr 11146 addclsr 11152 mulclsr 11153 addasssr 11157 mulasssr 11159 distrsr 11160 mulgt0sr 11174 addresr 11207 mulresr 11208 axaddf 11214 axmulf 11215 axaddass 11225 axmulass 11226 axdistr 11227 mulgt0 11367 mul4 11458 add4 11510 2addsub 11550 addsubeq4 11551 sub4 11581 muladd 11722 mulsub 11733 mulge0 11808 add20i 11833 mulge0i 11837 mulne0 11932 divmuldiv 11994 rec11i 12035 ltmul12a 12150 mulge0b 12165 zmulcl 12692 uz2mulcl 12991 qaddcl 13030 qmulcl 13032 qreccl 13034 rpaddcl 13079 xmulgt0 13345 xmulge0 13346 ixxin 13424 ge0addcl 13520 ge0xaddcl 13522 fzadd2 13619 serge0 14107 expge1 14150 sqrmo 15300 rexanuz 15394 amgm2 15418 bhmafibid1cn 15512 bhmafibid2cn 15513 mulcn2 15642 dvds2ln 16337 opoe 16411 omoe 16412 opeo 16413 omeo 16414 divalglem6 16446 divalglem8 16448 lcmcllem 16643 lcmgcd 16654 lcmdvds 16655 pc2dvds 16926 catpropd 17767 gimco 19308 efgrelexlemb 19792 psgnghm 21621 pf1ind 22380 tgcl 22997 innei 23154 iunconnlem 23456 txbas 23596 txss12 23634 txbasval 23635 tx1stc 23679 fbunfip 23898 tsmsxp 24184 blsscls2 24538 bddnghm 24768 qtopbaslem 24800 iimulcl 24985 icoopnst 24988 iocopnst 24989 iccpnfcnv 24994 mumullem2 27241 fsumvma 27275 lgslem3 27361 pntrsumbnd2 27629 mulsuniflem 28193 readdscl 28449 remulscllem2 28451 remulscl 28452 ajmoi 30890 hvadd4 31068 hvsub4 31069 shsel3 31347 shscli 31349 shscom 31351 chj4 31567 5oalem3 31688 5oalem5 31690 5oalem6 31691 hoadd4 31816 adjmo 31864 adjsym 31865 cnvadj 31924 leopmuli 32165 mdslmd1lem2 32358 chirredlem2 32423 chirredi 32426 cdjreui 32464 addltmulALT 32478 reofld 33337 xrge0iifcnv 33879 funtransport 35995 btwnconn1lem13 36063 btwnconn1lem14 36064 outsideofeu 36095 outsidele 36096 funray 36104 lineintmo 36121 bj-nnfan 36714 bj-nnfor 36716 icoreclin 37323 poimirlem27 37607 heicant 37615 itg2gt0cn 37635 bndss 37746 isdrngo3 37919 riscer 37948 intidl 37989 rimco 42473 unxpwdom3 43052 gbegt5 47635 |
Copyright terms: Public domain | W3C validator |