![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2377 nfeqf 2383 frminex 5667 trin2 6145 funprg 6621 funcnvqp 6631 fnun 6682 2elresin 6689 f1cof1 6814 f1oun 6867 f1oco 6871 fvreseq0 7057 f1mpt 7280 poxp 8151 soxp 8152 poseq 8181 wfr3g 8345 wfrfunOLD 8357 tfrlem7 8421 oeoe 8635 brecop 8848 pmss12g 8907 dif1ennnALT 9308 fiin 9459 tcmin 9778 frr3g 9793 harval2 10034 genpv 11036 genpdm 11039 genpnnp 11042 genpcd 11043 genpnmax 11044 addcmpblnr 11106 ltsrpr 11114 addclsr 11120 mulclsr 11121 addasssr 11125 mulasssr 11127 distrsr 11128 mulgt0sr 11142 addresr 11175 mulresr 11176 axaddf 11182 axmulf 11183 axaddass 11193 axmulass 11194 axdistr 11195 mulgt0 11335 mul4 11426 add4 11479 2addsub 11519 addsubeq4 11520 sub4 11551 muladd 11692 mulsub 11703 mulge0 11778 add20i 11803 mulge0i 11807 mulne0 11902 divmuldiv 11964 rec11i 12005 ltmul12a 12120 mulge0b 12135 zmulcl 12663 uz2mulcl 12965 qaddcl 13004 qmulcl 13006 qreccl 13008 rpaddcl 13054 xmulgt0 13321 xmulge0 13322 ixxin 13400 ge0addcl 13496 ge0xaddcl 13498 fzadd2 13595 serge0 14093 expge1 14136 sqrmo 15286 rexanuz 15380 amgm2 15404 bhmafibid1cn 15498 bhmafibid2cn 15499 mulcn2 15628 dvds2ln 16322 opoe 16396 omoe 16397 opeo 16398 omeo 16399 divalglem6 16431 divalglem8 16433 lcmcllem 16629 lcmgcd 16640 lcmdvds 16641 pc2dvds 16912 catpropd 17753 gimco 19298 efgrelexlemb 19782 psgnghm 21615 pf1ind 22374 tgcl 22991 innei 23148 iunconnlem 23450 txbas 23590 txss12 23628 txbasval 23629 tx1stc 23673 fbunfip 23892 tsmsxp 24178 blsscls2 24532 bddnghm 24762 qtopbaslem 24794 iimulcl 24979 icoopnst 24982 iocopnst 24983 iccpnfcnv 24988 mumullem2 27237 fsumvma 27271 lgslem3 27357 pntrsumbnd2 27625 mulsuniflem 28189 readdscl 28445 remulscllem2 28447 remulscl 28448 ajmoi 30886 hvadd4 31064 hvsub4 31065 shsel3 31343 shscli 31345 shscom 31347 chj4 31563 5oalem3 31684 5oalem5 31686 5oalem6 31687 hoadd4 31812 adjmo 31860 adjsym 31861 cnvadj 31920 leopmuli 32161 mdslmd1lem2 32354 chirredlem2 32419 chirredi 32422 cdjreui 32460 addltmulALT 32474 reofld 33351 xrge0iifcnv 33893 funtransport 36012 btwnconn1lem13 36080 btwnconn1lem14 36081 outsideofeu 36112 outsidele 36113 funray 36121 lineintmo 36138 bj-nnfan 36730 bj-nnfor 36732 icoreclin 37339 poimirlem27 37633 heicant 37641 itg2gt0cn 37661 bndss 37772 isdrngo3 37945 riscer 37974 intidl 38015 rimco 42504 unxpwdom3 43083 gbegt5 47685 |
Copyright terms: Public domain | W3C validator |