| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2373 nfeqf 2379 frminex 5617 trin2 6096 funprg 6570 funcnvqp 6580 fnun 6632 2elresin 6639 f1cof1 6766 f1oun 6819 f1oco 6823 fvreseq0 7010 f1mpt 7236 poxp 8107 soxp 8108 poseq 8137 wfr3g 8298 tfrlem7 8351 oeoe 8563 brecop 8783 pmss12g 8842 dif1ennnALT 9222 fiin 9373 tcmin 9694 frr3g 9709 harval2 9950 genpv 10952 genpdm 10955 genpnnp 10958 genpcd 10959 genpnmax 10960 addcmpblnr 11022 ltsrpr 11030 addclsr 11036 mulclsr 11037 addasssr 11041 mulasssr 11043 distrsr 11044 mulgt0sr 11058 addresr 11091 mulresr 11092 axaddf 11098 axmulf 11099 axaddass 11109 axmulass 11110 axdistr 11111 mulgt0 11251 mul4 11342 add4 11395 2addsub 11435 addsubeq4 11436 sub4 11467 muladd 11610 mulsub 11621 mulge0 11696 add20i 11721 mulge0i 11725 mulne0 11820 divmuldiv 11882 rec11i 11923 ltmul12a 12038 mulge0b 12053 zmulcl 12582 uz2mulcl 12885 qaddcl 12924 qmulcl 12926 qreccl 12928 rpaddcl 12975 xmulgt0 13243 xmulge0 13244 ixxin 13323 ge0addcl 13421 ge0xaddcl 13423 fzadd2 13520 serge0 14021 expge1 14064 sqrmo 15217 rexanuz 15312 amgm2 15336 bhmafibid1cn 15432 bhmafibid2cn 15433 mulcn2 15562 dvds2ln 16259 opoe 16333 omoe 16334 opeo 16335 omeo 16336 divalglem6 16368 divalglem8 16370 lcmcllem 16566 lcmgcd 16577 lcmdvds 16578 pc2dvds 16850 catpropd 17670 gimco 19200 efgrelexlemb 19680 psgnghm 21489 pf1ind 22242 tgcl 22856 innei 23012 iunconnlem 23314 txbas 23454 txss12 23492 txbasval 23493 tx1stc 23537 fbunfip 23756 tsmsxp 24042 blsscls2 24392 bddnghm 24614 qtopbaslem 24646 iimulcl 24833 icoopnst 24836 iocopnst 24837 iccpnfcnv 24842 mumullem2 27090 fsumvma 27124 lgslem3 27210 pntrsumbnd2 27478 mulsuniflem 28052 readdscl 28350 remulscllem2 28352 remulscl 28353 ajmoi 30787 hvadd4 30965 hvsub4 30966 shsel3 31244 shscli 31246 shscom 31248 chj4 31464 5oalem3 31585 5oalem5 31587 5oalem6 31588 hoadd4 31713 adjmo 31761 adjsym 31762 cnvadj 31821 leopmuli 32062 mdslmd1lem2 32255 chirredlem2 32320 chirredi 32323 cdjreui 32361 addltmulALT 32375 reofld 33315 xrge0iifcnv 33923 funtransport 36019 btwnconn1lem13 36087 btwnconn1lem14 36088 outsideofeu 36119 outsidele 36120 funray 36128 lineintmo 36145 bj-nnfan 36736 bj-nnfor 36738 icoreclin 37345 poimirlem27 37641 heicant 37649 itg2gt0cn 37669 bndss 37780 isdrngo3 37953 riscer 37982 intidl 38023 rimco 42506 unxpwdom3 43084 gbegt5 47762 |
| Copyright terms: Public domain | W3C validator |