| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2379 nfeqf 2385 frminex 5633 trin2 6112 funprg 6589 funcnvqp 6599 fnun 6651 2elresin 6658 f1cof1 6783 f1oun 6836 f1oco 6840 fvreseq0 7027 f1mpt 7253 poxp 8125 soxp 8126 poseq 8155 wfr3g 8319 wfrfunOLD 8331 tfrlem7 8395 oeoe 8609 brecop 8822 pmss12g 8881 dif1ennnALT 9281 fiin 9432 tcmin 9753 frr3g 9768 harval2 10009 genpv 11011 genpdm 11014 genpnnp 11017 genpcd 11018 genpnmax 11019 addcmpblnr 11081 ltsrpr 11089 addclsr 11095 mulclsr 11096 addasssr 11100 mulasssr 11102 distrsr 11103 mulgt0sr 11117 addresr 11150 mulresr 11151 axaddf 11157 axmulf 11158 axaddass 11168 axmulass 11169 axdistr 11170 mulgt0 11310 mul4 11401 add4 11454 2addsub 11494 addsubeq4 11495 sub4 11526 muladd 11667 mulsub 11678 mulge0 11753 add20i 11778 mulge0i 11782 mulne0 11877 divmuldiv 11939 rec11i 11980 ltmul12a 12095 mulge0b 12110 zmulcl 12639 uz2mulcl 12940 qaddcl 12979 qmulcl 12981 qreccl 12983 rpaddcl 13029 xmulgt0 13297 xmulge0 13298 ixxin 13377 ge0addcl 13475 ge0xaddcl 13477 fzadd2 13574 serge0 14072 expge1 14115 sqrmo 15268 rexanuz 15362 amgm2 15386 bhmafibid1cn 15480 bhmafibid2cn 15481 mulcn2 15610 dvds2ln 16306 opoe 16380 omoe 16381 opeo 16382 omeo 16383 divalglem6 16415 divalglem8 16417 lcmcllem 16613 lcmgcd 16624 lcmdvds 16625 pc2dvds 16897 catpropd 17719 gimco 19249 efgrelexlemb 19729 psgnghm 21538 pf1ind 22291 tgcl 22905 innei 23061 iunconnlem 23363 txbas 23503 txss12 23541 txbasval 23542 tx1stc 23586 fbunfip 23805 tsmsxp 24091 blsscls2 24441 bddnghm 24663 qtopbaslem 24695 iimulcl 24882 icoopnst 24885 iocopnst 24886 iccpnfcnv 24891 mumullem2 27140 fsumvma 27174 lgslem3 27260 pntrsumbnd2 27528 mulsuniflem 28092 readdscl 28348 remulscllem2 28350 remulscl 28351 ajmoi 30785 hvadd4 30963 hvsub4 30964 shsel3 31242 shscli 31244 shscom 31246 chj4 31462 5oalem3 31583 5oalem5 31585 5oalem6 31586 hoadd4 31711 adjmo 31759 adjsym 31760 cnvadj 31819 leopmuli 32060 mdslmd1lem2 32253 chirredlem2 32318 chirredi 32321 cdjreui 32359 addltmulALT 32373 reofld 33305 xrge0iifcnv 33910 funtransport 35995 btwnconn1lem13 36063 btwnconn1lem14 36064 outsideofeu 36095 outsidele 36096 funray 36104 lineintmo 36121 bj-nnfan 36712 bj-nnfor 36714 icoreclin 37321 poimirlem27 37617 heicant 37625 itg2gt0cn 37645 bndss 37756 isdrngo3 37929 riscer 37958 intidl 37999 rimco 42488 unxpwdom3 43066 gbegt5 47723 |
| Copyright terms: Public domain | W3C validator |