![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 652 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 218 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: an42s 657 anandis 674 anandirs 675 ax13 2349 nfeqf 2356 frminex 5430 trin2 5866 funprg 6285 funcnvqp 6295 fnun 6340 2elresin 6345 f1co 6460 f1oun 6509 f1oco 6512 fvreseq0 6680 f1mpt 6891 poxp 7682 soxp 7683 wfr3g 7811 wfrfun 7824 tfrlem7 7878 oeoe 8082 brecop 8247 pmss12g 8290 dif1en 8604 fiin 8739 tcmin 9036 harval2 9279 genpv 10274 genpdm 10277 genpnnp 10280 genpcd 10281 genpnmax 10282 addcmpblnr 10344 ltsrpr 10352 addclsr 10358 mulclsr 10359 addasssr 10363 mulasssr 10365 distrsr 10366 mulgt0sr 10380 addresr 10413 mulresr 10414 axaddf 10420 axmulf 10421 axaddass 10431 axmulass 10432 axdistr 10433 mulgt0 10571 mul4 10661 add4 10713 2addsub 10754 addsubeq4 10755 sub4 10785 muladd 10926 mulsub 10937 mulge0 11012 add20i 11037 mulge0i 11041 mulne0 11136 divmuldiv 11194 rec11i 11235 ltmul12a 11350 mulge0b 11364 zmulcl 11885 uz2mulcl 12179 qaddcl 12218 qmulcl 12220 qreccl 12222 rpaddcl 12265 xmulgt0 12530 xmulge0 12531 ixxin 12609 ge0addcl 12702 ge0xaddcl 12704 fzadd2 12796 serge0 13278 expge1 13320 sqrmo 14449 rexanuz 14543 amgm2 14567 bhmafibid1cn 14661 bhmafibid2cn 14662 mulcn2 14790 dvds2ln 15479 opoe 15549 omoe 15550 opeo 15551 omeo 15552 divalglem6 15586 divalglem8 15588 lcmcllem 15773 lcmgcd 15784 lcmdvds 15785 pc2dvds 16048 catpropd 16812 gimco 18153 efgrelexlemb 18607 pf1ind 20204 psgnghm 20410 tgcl 21265 innei 21421 iunconnlem 21723 txbas 21863 txss12 21901 txbasval 21902 tx1stc 21946 fbunfip 22165 tsmsxp 22450 blsscls2 22801 bddnghm 23022 qtopbaslem 23054 iimulcl 23228 icoopnst 23230 iocopnst 23231 iccpnfcnv 23235 mumullem2 25443 fsumvma 25475 lgslem3 25561 pntrsumbnd2 25829 ajmoi 28322 hvadd4 28500 hvsub4 28501 shsel3 28779 shscli 28781 shscom 28783 chj4 28999 5oalem3 29120 5oalem5 29122 5oalem6 29123 hoadd4 29248 adjmo 29296 adjsym 29297 cnvadj 29356 leopmuli 29597 mdslmd1lem2 29790 chirredlem2 29855 chirredi 29858 cdjreui 29896 addltmulALT 29910 reofld 30563 xrge0iifcnv 30789 poseq 32706 frr3g 32732 funtransport 33103 btwnconn1lem13 33171 btwnconn1lem14 33172 outsideofeu 33203 outsidele 33204 funray 33212 lineintmo 33229 bj-nnfan 33873 bj-nnfor 33875 icoreclin 34190 poimirlem27 34471 heicant 34479 itg2gt0cn 34499 bndss 34617 isdrngo3 34790 riscer 34819 intidl 34860 unxpwdom3 39201 gbegt5 43430 |
Copyright terms: Public domain | W3C validator |