| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
| 2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 anandis 678 anandirs 679 ax13 2375 nfeqf 2381 frminex 5593 trin2 6069 funprg 6535 funcnvqp 6545 fnun 6595 2elresin 6602 f1cof1 6729 f1oun 6782 f1oco 6786 fvreseq0 6971 f1mpt 7195 poxp 8058 soxp 8059 poseq 8088 wfr3g 8249 tfrlem7 8302 oeoe 8514 brecop 8734 pmss12g 8793 dif1ennnALT 9161 fiin 9306 tcmin 9629 frr3g 9649 harval2 9890 genpv 10890 genpdm 10893 genpnnp 10896 genpcd 10897 genpnmax 10898 addcmpblnr 10960 ltsrpr 10968 addclsr 10974 mulclsr 10975 addasssr 10979 mulasssr 10981 distrsr 10982 mulgt0sr 10996 addresr 11029 mulresr 11030 axaddf 11036 axmulf 11037 axaddass 11047 axmulass 11048 axdistr 11049 mulgt0 11190 mul4 11281 add4 11334 2addsub 11374 addsubeq4 11375 sub4 11406 muladd 11549 mulsub 11560 mulge0 11635 add20i 11660 mulge0i 11664 mulne0 11759 divmuldiv 11821 rec11i 11862 ltmul12a 11977 mulge0b 11992 zmulcl 12521 uz2mulcl 12824 qaddcl 12863 qmulcl 12865 qreccl 12867 rpaddcl 12914 xmulgt0 13182 xmulge0 13183 ixxin 13262 ge0addcl 13360 ge0xaddcl 13362 fzadd2 13459 serge0 13963 expge1 14006 sqrmo 15158 rexanuz 15253 amgm2 15277 bhmafibid1cn 15373 bhmafibid2cn 15374 mulcn2 15503 dvds2ln 16200 opoe 16274 omoe 16275 opeo 16276 omeo 16277 divalglem6 16309 divalglem8 16311 lcmcllem 16507 lcmgcd 16518 lcmdvds 16519 pc2dvds 16791 catpropd 17615 gimco 19180 efgrelexlemb 19662 psgnghm 21517 pf1ind 22270 tgcl 22884 innei 23040 iunconnlem 23342 txbas 23482 txss12 23520 txbasval 23521 tx1stc 23565 fbunfip 23784 tsmsxp 24070 blsscls2 24419 bddnghm 24641 qtopbaslem 24673 iimulcl 24860 icoopnst 24863 iocopnst 24864 iccpnfcnv 24869 mumullem2 27117 fsumvma 27151 lgslem3 27237 pntrsumbnd2 27505 mulsuniflem 28088 readdscl 28401 remulscllem2 28403 remulscl 28404 ajmoi 30838 hvadd4 31016 hvsub4 31017 shsel3 31295 shscli 31297 shscom 31299 chj4 31515 5oalem3 31636 5oalem5 31638 5oalem6 31639 hoadd4 31764 adjmo 31812 adjsym 31813 cnvadj 31872 leopmuli 32113 mdslmd1lem2 32306 chirredlem2 32371 chirredi 32374 cdjreui 32412 addltmulALT 32426 reofld 33308 xrge0iifcnv 33946 funtransport 36075 btwnconn1lem13 36143 btwnconn1lem14 36144 outsideofeu 36175 outsidele 36176 funray 36184 lineintmo 36201 bj-nnfan 36792 bj-nnfor 36794 icoreclin 37401 poimirlem27 37697 heicant 37705 itg2gt0cn 37725 bndss 37836 isdrngo3 38009 riscer 38038 intidl 38079 rimco 42621 unxpwdom3 43198 gbegt5 47871 |
| Copyright terms: Public domain | W3C validator |