Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an4s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an4s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 653 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
2 | an4s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an42s 658 anandis 675 anandirs 676 ax13 2375 nfeqf 2381 frminex 5569 trin2 6028 funprg 6488 funcnvqp 6498 fnun 6545 2elresin 6553 f1cof1 6681 f1coOLD 6683 f1oun 6735 f1oco 6739 fvreseq0 6915 f1mpt 7134 poxp 7969 soxp 7970 wfr3g 8138 wfrfunOLD 8150 tfrlem7 8214 oeoe 8430 brecop 8599 pmss12g 8657 dif1enALT 9050 fiin 9181 tcmin 9499 frr3g 9514 harval2 9755 genpv 10755 genpdm 10758 genpnnp 10761 genpcd 10762 genpnmax 10763 addcmpblnr 10825 ltsrpr 10833 addclsr 10839 mulclsr 10840 addasssr 10844 mulasssr 10846 distrsr 10847 mulgt0sr 10861 addresr 10894 mulresr 10895 axaddf 10901 axmulf 10902 axaddass 10912 axmulass 10913 axdistr 10914 mulgt0 11052 mul4 11143 add4 11195 2addsub 11235 addsubeq4 11236 sub4 11266 muladd 11407 mulsub 11418 mulge0 11493 add20i 11518 mulge0i 11522 mulne0 11617 divmuldiv 11675 rec11i 11716 ltmul12a 11831 mulge0b 11845 zmulcl 12369 uz2mulcl 12666 qaddcl 12705 qmulcl 12707 qreccl 12709 rpaddcl 12752 xmulgt0 13017 xmulge0 13018 ixxin 13096 ge0addcl 13192 ge0xaddcl 13194 fzadd2 13291 serge0 13777 expge1 13820 sqrmo 14963 rexanuz 15057 amgm2 15081 bhmafibid1cn 15175 bhmafibid2cn 15176 mulcn2 15305 dvds2ln 15998 opoe 16072 omoe 16073 opeo 16074 omeo 16075 divalglem6 16107 divalglem8 16109 lcmcllem 16301 lcmgcd 16312 lcmdvds 16313 pc2dvds 16580 catpropd 17418 gimco 18884 efgrelexlemb 19356 psgnghm 20785 pf1ind 21521 tgcl 22119 innei 22276 iunconnlem 22578 txbas 22718 txss12 22756 txbasval 22757 tx1stc 22801 fbunfip 23020 tsmsxp 23306 blsscls2 23660 bddnghm 23890 qtopbaslem 23922 iimulcl 24100 icoopnst 24102 iocopnst 24103 iccpnfcnv 24107 mumullem2 26329 fsumvma 26361 lgslem3 26447 pntrsumbnd2 26715 ajmoi 29220 hvadd4 29398 hvsub4 29399 shsel3 29677 shscli 29679 shscom 29681 chj4 29897 5oalem3 30018 5oalem5 30020 5oalem6 30021 hoadd4 30146 adjmo 30194 adjsym 30195 cnvadj 30254 leopmuli 30495 mdslmd1lem2 30688 chirredlem2 30753 chirredi 30756 cdjreui 30794 addltmulALT 30808 reofld 31544 xrge0iifcnv 31883 poseq 33802 funtransport 34333 btwnconn1lem13 34401 btwnconn1lem14 34402 outsideofeu 34433 outsidele 34434 funray 34442 lineintmo 34459 bj-nnfan 34930 bj-nnfor 34932 icoreclin 35528 poimirlem27 35804 heicant 35812 itg2gt0cn 35832 bndss 35944 isdrngo3 36117 riscer 36146 intidl 36187 unxpwdom3 40920 gbegt5 45213 |
Copyright terms: Public domain | W3C validator |