![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trressn | Structured version Visualization version GIF version |
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38398) is transitive, see also trrelressn 38539. (Contributed by Peter Mazsa, 16-Jun-2024.) |
Ref | Expression |
---|---|
trressn | ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an3 658 | . . . . 5 ⊢ (((𝑥 = 𝐴 ∧ 𝐴𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝐴𝑅𝑧)) → (𝑥 = 𝐴 ∧ 𝐴𝑅𝑧)) | |
2 | eqbrb 38188 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑦)) | |
3 | eqbrb 38188 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑦𝑅𝑧) ↔ (𝑦 = 𝐴 ∧ 𝐴𝑅𝑧)) | |
4 | 2, 3 | anbi12i 627 | . . . . 5 ⊢ (((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧)) ↔ ((𝑥 = 𝐴 ∧ 𝐴𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝐴𝑅𝑧))) |
5 | eqbrb 38188 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥𝑅𝑧) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑧)) | |
6 | 1, 4, 5 | 3imtr4i 292 | . . . 4 ⊢ (((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧)) → (𝑥 = 𝐴 ∧ 𝑥𝑅𝑧)) |
7 | brressn 38397 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦))) | |
8 | 7 | el2v 3495 | . . . . 5 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦)) |
9 | brressn 38397 | . . . . . 6 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧))) | |
10 | 9 | el2v 3495 | . . . . 5 ⊢ (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧)) |
11 | 8, 10 | anbi12i 627 | . . . 4 ⊢ ((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) ↔ ((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧))) |
12 | brressn 38397 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑧))) | |
13 | 12 | el2v 3495 | . . . 4 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑧)) |
14 | 6, 11, 13 | 3imtr4i 292 | . . 3 ⊢ ((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
15 | 14 | gen2 1794 | . 2 ⊢ ∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
16 | 15 | ax-gen 1793 | 1 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 Vcvv 3488 {csn 4648 class class class wbr 5166 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 |
This theorem is referenced by: trrelressn 38539 |
Copyright terms: Public domain | W3C validator |