| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trressn | Structured version Visualization version GIF version | ||
| Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38554) is transitive, see also trrelressn 38689. (Contributed by Peter Mazsa, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| trressn | ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an3 659 | . . . . 5 ⊢ (((𝑥 = 𝐴 ∧ 𝐴𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝐴𝑅𝑧)) → (𝑥 = 𝐴 ∧ 𝐴𝑅𝑧)) | |
| 2 | eqbrb 38284 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑦)) | |
| 3 | eqbrb 38284 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑦𝑅𝑧) ↔ (𝑦 = 𝐴 ∧ 𝐴𝑅𝑧)) | |
| 4 | 2, 3 | anbi12i 628 | . . . . 5 ⊢ (((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧)) ↔ ((𝑥 = 𝐴 ∧ 𝐴𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝐴𝑅𝑧))) |
| 5 | eqbrb 38284 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥𝑅𝑧) ↔ (𝑥 = 𝐴 ∧ 𝐴𝑅𝑧)) | |
| 6 | 1, 4, 5 | 3imtr4i 292 | . . . 4 ⊢ (((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧)) → (𝑥 = 𝐴 ∧ 𝑥𝑅𝑧)) |
| 7 | brressn 38553 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦))) | |
| 8 | 7 | el2v 3443 | . . . . 5 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦)) |
| 9 | brressn 38553 | . . . . . 6 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧))) | |
| 10 | 9 | el2v 3443 | . . . . 5 ⊢ (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧)) |
| 11 | 8, 10 | anbi12i 628 | . . . 4 ⊢ ((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) ↔ ((𝑥 = 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑧))) |
| 12 | brressn 38553 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑧))) | |
| 13 | 12 | el2v 3443 | . . . 4 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑧)) |
| 14 | 6, 11, 13 | 3imtr4i 292 | . . 3 ⊢ ((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
| 15 | 14 | gen2 1797 | . 2 ⊢ ∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
| 16 | 15 | ax-gen 1796 | 1 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 Vcvv 3436 {csn 4573 class class class wbr 5089 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: trrelressn 38689 |
| Copyright terms: Public domain | W3C validator |