Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trressn Structured version   Visualization version   GIF version

Theorem trressn 38463
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38460) is transitive, see also trrelressn 38601. (Contributed by Peter Mazsa, 16-Jun-2024.)
Assertion
Ref Expression
trressn 𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)

Proof of Theorem trressn
StepHypRef Expression
1 an3 659 . . . . 5 (((𝑥 = 𝐴𝐴𝑅𝑦) ∧ (𝑦 = 𝐴𝐴𝑅𝑧)) → (𝑥 = 𝐴𝐴𝑅𝑧))
2 eqbrb 38251 . . . . . 6 ((𝑥 = 𝐴𝑥𝑅𝑦) ↔ (𝑥 = 𝐴𝐴𝑅𝑦))
3 eqbrb 38251 . . . . . 6 ((𝑦 = 𝐴𝑦𝑅𝑧) ↔ (𝑦 = 𝐴𝐴𝑅𝑧))
42, 3anbi12i 628 . . . . 5 (((𝑥 = 𝐴𝑥𝑅𝑦) ∧ (𝑦 = 𝐴𝑦𝑅𝑧)) ↔ ((𝑥 = 𝐴𝐴𝑅𝑦) ∧ (𝑦 = 𝐴𝐴𝑅𝑧)))
5 eqbrb 38251 . . . . 5 ((𝑥 = 𝐴𝑥𝑅𝑧) ↔ (𝑥 = 𝐴𝐴𝑅𝑧))
61, 4, 53imtr4i 292 . . . 4 (((𝑥 = 𝐴𝑥𝑅𝑦) ∧ (𝑦 = 𝐴𝑦𝑅𝑧)) → (𝑥 = 𝐴𝑥𝑅𝑧))
7 brressn 38459 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴𝑥𝑅𝑦)))
87el2v 3466 . . . . 5 (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴𝑥𝑅𝑦))
9 brressn 38459 . . . . . 6 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴𝑦𝑅𝑧)))
109el2v 3466 . . . . 5 (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴𝑦𝑅𝑧))
118, 10anbi12i 628 . . . 4 ((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) ↔ ((𝑥 = 𝐴𝑥𝑅𝑦) ∧ (𝑦 = 𝐴𝑦𝑅𝑧)))
12 brressn 38459 . . . . 5 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴𝑥𝑅𝑧)))
1312el2v 3466 . . . 4 (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴𝑥𝑅𝑧))
146, 11, 133imtr4i 292 . . 3 ((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
1514gen2 1796 . 2 𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
1615ax-gen 1795 1 𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  Vcvv 3459  {csn 4601   class class class wbr 5119  cres 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-res 5666
This theorem is referenced by:  trrelressn  38601
  Copyright terms: Public domain W3C validator