Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trressn Structured version   Visualization version   GIF version

Theorem trressn 36659
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 36656) is transitive, see also trrelressn 36797. (Contributed by Peter Mazsa, 16-Jun-2024.)
Assertion
Ref Expression
trressn 𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)

Proof of Theorem trressn
StepHypRef Expression
1 an3 657 . . . . 5 (((𝑥 = 𝐴𝐴𝑅𝑦) ∧ (𝑦 = 𝐴𝐴𝑅𝑧)) → (𝑥 = 𝐴𝐴𝑅𝑧))
2 eqbrb 36438 . . . . . 6 ((𝑥 = 𝐴𝑥𝑅𝑦) ↔ (𝑥 = 𝐴𝐴𝑅𝑦))
3 eqbrb 36438 . . . . . 6 ((𝑦 = 𝐴𝑦𝑅𝑧) ↔ (𝑦 = 𝐴𝐴𝑅𝑧))
42, 3anbi12i 628 . . . . 5 (((𝑥 = 𝐴𝑥𝑅𝑦) ∧ (𝑦 = 𝐴𝑦𝑅𝑧)) ↔ ((𝑥 = 𝐴𝐴𝑅𝑦) ∧ (𝑦 = 𝐴𝐴𝑅𝑧)))
5 eqbrb 36438 . . . . 5 ((𝑥 = 𝐴𝑥𝑅𝑧) ↔ (𝑥 = 𝐴𝐴𝑅𝑧))
61, 4, 53imtr4i 292 . . . 4 (((𝑥 = 𝐴𝑥𝑅𝑦) ∧ (𝑦 = 𝐴𝑦𝑅𝑧)) → (𝑥 = 𝐴𝑥𝑅𝑧))
7 brressn 36655 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴𝑥𝑅𝑦)))
87el2v 3445 . . . . 5 (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴𝑥𝑅𝑦))
9 brressn 36655 . . . . . 6 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴𝑦𝑅𝑧)))
109el2v 3445 . . . . 5 (𝑦(𝑅 ↾ {𝐴})𝑧 ↔ (𝑦 = 𝐴𝑦𝑅𝑧))
118, 10anbi12i 628 . . . 4 ((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) ↔ ((𝑥 = 𝐴𝑥𝑅𝑦) ∧ (𝑦 = 𝐴𝑦𝑅𝑧)))
12 brressn 36655 . . . . 5 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴𝑥𝑅𝑧)))
1312el2v 3445 . . . 4 (𝑥(𝑅 ↾ {𝐴})𝑧 ↔ (𝑥 = 𝐴𝑥𝑅𝑧))
146, 11, 133imtr4i 292 . . 3 ((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
1514gen2 1796 . 2 𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
1615ax-gen 1795 1 𝑥𝑦𝑧((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537   = wceq 1539  Vcvv 3437  {csn 4565   class class class wbr 5081  cres 5602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-res 5612
This theorem is referenced by:  trrelressn  36797
  Copyright terms: Public domain W3C validator