| Step | Hyp | Ref
| Expression |
| 1 | | catidex.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 2 | | catidex.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐶) |
| 3 | | catidex.o |
. . 3
⊢ · =
(comp‘𝐶) |
| 4 | | catidex.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | | catidex.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 6 | 1, 2, 3, 4, 5 | catidex 17717 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) |
| 7 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑦𝐻𝑋) = (𝑋𝐻𝑋)) |
| 8 | | opeq1 4873 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → 〈𝑦, 𝑋〉 = 〈𝑋, 𝑋〉) |
| 9 | 8 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (〈𝑦, 𝑋〉 · 𝑋) = (〈𝑋, 𝑋〉 · 𝑋)) |
| 10 | 9 | oveqd 7448 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → (𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 11 | 10 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → ((𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ↔ (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓)) |
| 12 | 7, 11 | raleqbidv 3346 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓)) |
| 13 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑋𝐻𝑦) = (𝑋𝐻𝑋)) |
| 14 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (〈𝑋, 𝑋〉 · 𝑦) = (〈𝑋, 𝑋〉 · 𝑋)) |
| 15 | 14 | oveqd 7448 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → (𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔)) |
| 16 | 15 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → ((𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓)) |
| 17 | 13, 16 | raleqbidv 3346 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓)) |
| 18 | 12, 17 | anbi12d 632 |
. . . . . 6
⊢ (𝑦 = 𝑋 → ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓))) |
| 19 | 18 | rspcv 3618 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓))) |
| 20 | 5, 19 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓))) |
| 21 | 20 | ralrimivw 3150 |
. . 3
⊢ (𝜑 → ∀𝑔 ∈ (𝑋𝐻𝑋)(∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓))) |
| 22 | | an3 659 |
. . . . . . 7
⊢
(((∀𝑓 ∈
(𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) |
| 23 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ)) |
| 24 | | id 22 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → 𝑓 = ℎ) |
| 25 | 23, 24 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → ((𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ↔ (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = ℎ)) |
| 26 | 25 | rspcv 3618 |
. . . . . . . 8
⊢ (ℎ ∈ (𝑋𝐻𝑋) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 → (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = ℎ)) |
| 27 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ)) |
| 28 | | id 22 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → 𝑓 = 𝑔) |
| 29 | 27, 28 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓 ↔ (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑔)) |
| 30 | 29 | rspcv 3618 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓 → (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑔)) |
| 31 | 26, 30 | im2anan9r 621 |
. . . . . . 7
⊢ ((𝑔 ∈ (𝑋𝐻𝑋) ∧ ℎ ∈ (𝑋𝐻𝑋)) → ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓) → ((𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = ℎ ∧ (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑔))) |
| 32 | | eqtr2 2761 |
. . . . . . . 8
⊢ (((𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = ℎ ∧ (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑔) → ℎ = 𝑔) |
| 33 | 32 | equcomd 2018 |
. . . . . . 7
⊢ (((𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = ℎ ∧ (𝑔(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑔) → 𝑔 = ℎ) |
| 34 | 22, 31, 33 | syl56 36 |
. . . . . 6
⊢ ((𝑔 ∈ (𝑋𝐻𝑋) ∧ ℎ ∈ (𝑋𝐻𝑋)) → (((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) → 𝑔 = ℎ)) |
| 35 | 34 | rgen2 3199 |
. . . . 5
⊢
∀𝑔 ∈
(𝑋𝐻𝑋)∀ℎ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) → 𝑔 = ℎ) |
| 36 | 35 | a1i 11 |
. . . 4
⊢ (𝜑 → ∀𝑔 ∈ (𝑋𝐻𝑋)∀ℎ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) → 𝑔 = ℎ)) |
| 37 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑔 = ℎ → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 38 | 37 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑔 = ℎ → ((𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ↔ (ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓)) |
| 39 | 38 | ralbidv 3178 |
. . . . . 6
⊢ (𝑔 = ℎ → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓)) |
| 40 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑔 = ℎ → (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ)) |
| 41 | 40 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑔 = ℎ → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓 ↔ (𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) |
| 42 | 41 | ralbidv 3178 |
. . . . . 6
⊢ (𝑔 = ℎ → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) |
| 43 | 39, 42 | anbi12d 632 |
. . . . 5
⊢ (𝑔 = ℎ → ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓))) |
| 44 | 43 | rmo4 3736 |
. . . 4
⊢
(∃*𝑔 ∈
(𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ↔ ∀𝑔 ∈ (𝑋𝐻𝑋)∀ℎ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)(ℎ(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)ℎ) = 𝑓)) → 𝑔 = ℎ)) |
| 45 | 36, 44 | sylibr 234 |
. . 3
⊢ (𝜑 → ∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓)) |
| 46 | | rmoim 3746 |
. . 3
⊢
(∀𝑔 ∈
(𝑋𝐻𝑋)(∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓)) → (∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑓) → ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) |
| 47 | 21, 45, 46 | sylc 65 |
. 2
⊢ (𝜑 → ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) |
| 48 | | reu5 3382 |
. 2
⊢
(∃!𝑔 ∈
(𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) ↔ (∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓) ∧ ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) |
| 49 | 6, 47, 48 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) |