MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catideu Structured version   Visualization version   GIF version

Theorem catideu 16938
Description: Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidex.b 𝐵 = (Base‘𝐶)
catidex.h 𝐻 = (Hom ‘𝐶)
catidex.o · = (comp‘𝐶)
catidex.c (𝜑𝐶 ∈ Cat)
catidex.x (𝜑𝑋𝐵)
Assertion
Ref Expression
catideu (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
Distinct variable groups:   𝑓,𝑔,𝑦,𝐵   𝐶,𝑓,𝑔,𝑦   𝜑,𝑔   𝑓,𝑋,𝑔,𝑦   𝑓,𝐻,𝑔,𝑦   · ,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑓)

Proof of Theorem catideu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 catidex.b . . 3 𝐵 = (Base‘𝐶)
2 catidex.h . . 3 𝐻 = (Hom ‘𝐶)
3 catidex.o . . 3 · = (comp‘𝐶)
4 catidex.c . . 3 (𝜑𝐶 ∈ Cat)
5 catidex.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5catidex 16937 . 2 (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
7 oveq1 7142 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦𝐻𝑋) = (𝑋𝐻𝑋))
8 opeq1 4763 . . . . . . . . . . 11 (𝑦 = 𝑋 → ⟨𝑦, 𝑋⟩ = ⟨𝑋, 𝑋⟩)
98oveq1d 7150 . . . . . . . . . 10 (𝑦 = 𝑋 → (⟨𝑦, 𝑋· 𝑋) = (⟨𝑋, 𝑋· 𝑋))
109oveqd 7152 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓))
1110eqeq1d 2800 . . . . . . . 8 (𝑦 = 𝑋 → ((𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ↔ (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
127, 11raleqbidv 3354 . . . . . . 7 (𝑦 = 𝑋 → (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
13 oveq2 7143 . . . . . . . 8 (𝑦 = 𝑋 → (𝑋𝐻𝑦) = (𝑋𝐻𝑋))
14 oveq2 7143 . . . . . . . . . 10 (𝑦 = 𝑋 → (⟨𝑋, 𝑋· 𝑦) = (⟨𝑋, 𝑋· 𝑋))
1514oveqd 7152 . . . . . . . . 9 (𝑦 = 𝑋 → (𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔))
1615eqeq1d 2800 . . . . . . . 8 (𝑦 = 𝑋 → ((𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓))
1713, 16raleqbidv 3354 . . . . . . 7 (𝑦 = 𝑋 → (∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓))
1812, 17anbi12d 633 . . . . . 6 (𝑦 = 𝑋 → ((∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
1918rspcv 3566 . . . . 5 (𝑋𝐵 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
205, 19syl 17 . . . 4 (𝜑 → (∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
2120ralrimivw 3150 . . 3 (𝜑 → ∀𝑔 ∈ (𝑋𝐻𝑋)(∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)))
22 an3 658 . . . . . . 7 (((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
23 oveq2 7143 . . . . . . . . . 10 (𝑓 = → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋)))
24 id 22 . . . . . . . . . 10 (𝑓 = 𝑓 = )
2523, 24eqeq12d 2814 . . . . . . . . 9 (𝑓 = → ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ↔ (𝑔(⟨𝑋, 𝑋· 𝑋)) = ))
2625rspcv 3566 . . . . . . . 8 ( ∈ (𝑋𝐻𝑋) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 → (𝑔(⟨𝑋, 𝑋· 𝑋)) = ))
27 oveq1 7142 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓(⟨𝑋, 𝑋· 𝑋)) = (𝑔(⟨𝑋, 𝑋· 𝑋)))
28 id 22 . . . . . . . . . 10 (𝑓 = 𝑔𝑓 = 𝑔)
2927, 28eqeq12d 2814 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓 ↔ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔))
3029rspcv 3566 . . . . . . . 8 (𝑔 ∈ (𝑋𝐻𝑋) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓 → (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔))
3126, 30im2anan9r 623 . . . . . . 7 ((𝑔 ∈ (𝑋𝐻𝑋) ∧ ∈ (𝑋𝐻𝑋)) → ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓) → ((𝑔(⟨𝑋, 𝑋· 𝑋)) = ∧ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔)))
32 eqtr2 2819 . . . . . . . 8 (((𝑔(⟨𝑋, 𝑋· 𝑋)) = ∧ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔) → = 𝑔)
3332equcomd 2026 . . . . . . 7 (((𝑔(⟨𝑋, 𝑋· 𝑋)) = ∧ (𝑔(⟨𝑋, 𝑋· 𝑋)) = 𝑔) → 𝑔 = )
3422, 31, 33syl56 36 . . . . . 6 ((𝑔 ∈ (𝑋𝐻𝑋) ∧ ∈ (𝑋𝐻𝑋)) → (((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = ))
3534rgen2 3168 . . . . 5 𝑔 ∈ (𝑋𝐻𝑋)∀ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = )
3635a1i 11 . . . 4 (𝜑 → ∀𝑔 ∈ (𝑋𝐻𝑋)∀ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = ))
37 oveq1 7142 . . . . . . . 8 (𝑔 = → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = ((⟨𝑋, 𝑋· 𝑋)𝑓))
3837eqeq1d 2800 . . . . . . 7 (𝑔 = → ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ↔ ((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
3938ralbidv 3162 . . . . . 6 (𝑔 = → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓))
40 oveq2 7143 . . . . . . . 8 (𝑔 = → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = (𝑓(⟨𝑋, 𝑋· 𝑋)))
4140eqeq1d 2800 . . . . . . 7 (𝑔 = → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓 ↔ (𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
4241ralbidv 3162 . . . . . 6 (𝑔 = → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓))
4339, 42anbi12d 633 . . . . 5 (𝑔 = → ((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)))
4443rmo4 3669 . . . 4 (∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ↔ ∀𝑔 ∈ (𝑋𝐻𝑋)∀ ∈ (𝑋𝐻𝑋)(((∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) ∧ (∀𝑓 ∈ (𝑋𝐻𝑋)((⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)) = 𝑓)) → 𝑔 = ))
4536, 44sylibr 237 . . 3 (𝜑 → ∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓))
46 rmoim 3679 . . 3 (∀𝑔 ∈ (𝑋𝐻𝑋)(∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) → (∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓)) → (∃*𝑔 ∈ (𝑋𝐻𝑋)(∀𝑓 ∈ (𝑋𝐻𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑋)(𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑓) → ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
4721, 45, 46sylc 65 . 2 (𝜑 → ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
48 reu5 3375 . 2 (∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) ↔ (∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓) ∧ ∃*𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓)))
496, 47, 48sylanbrc 586 1 (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(⟨𝑦, 𝑋· 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(⟨𝑋, 𝑋· 𝑦)𝑔) = 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  ∃!wreu 3108  ∃*wrmo 3109  cop 4531  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-cat 16931
This theorem is referenced by:  catidd  16943  catidcl  16945  catlid  16946  catrid  16947
  Copyright terms: Public domain W3C validator