MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg2v Structured version   Visualization version   GIF version

Theorem usgredg2v 26522
Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
usgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
Assertion
Ref Expression
usgredg2v ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑦,𝐴   𝑦,𝐸,𝑥,𝑧   𝑦,𝐺   𝑦,𝑁   𝑦,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2v
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 usgredg2v.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
41, 2, 3usgredg2vlem1 26520 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
54ralrimiva 3174 . . 3 (𝐺 ∈ USGraph → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
65adantr 474 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
72usgrf1 26470 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→ran 𝐸)
87adantr 474 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐸:dom 𝐸1-1→ran 𝐸)
9 elrabi 3579 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑦 ∈ dom 𝐸)
109, 3eleq2s 2923 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ dom 𝐸)
11 elrabi 3579 . . . . . . . . . 10 (𝑤 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑤 ∈ dom 𝐸)
1211, 3eleq2s 2923 . . . . . . . . 9 (𝑤𝐴𝑤 ∈ dom 𝐸)
1310, 12anim12i 608 . . . . . . . 8 ((𝑦𝐴𝑤𝐴) → (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸))
14 f1fveq 6773 . . . . . . . 8 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
158, 13, 14syl2an 591 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
1615bicomd 215 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝑦 = 𝑤 ↔ (𝐸𝑦) = (𝐸𝑤)))
1716notbid 310 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ 𝑦 = 𝑤 ↔ ¬ (𝐸𝑦) = (𝐸𝑤)))
18 simpl 476 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐺 ∈ USGraph)
19 simpl 476 . . . . . . . . . 10 ((𝑦𝐴𝑤𝐴) → 𝑦𝐴)
2018, 19anim12i 608 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑦𝐴))
21 preq1 4485 . . . . . . . . . . 11 (𝑢 = 𝑧 → {𝑢, 𝑁} = {𝑧, 𝑁})
2221eqeq2d 2834 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝐸𝑦) = {𝑢, 𝑁} ↔ (𝐸𝑦) = {𝑧, 𝑁}))
2322cbvriotav 6876 . . . . . . . . 9 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})
241, 2, 3usgredg2vlem2 26521 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁}))
2520, 23, 24mpisyl 21 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁})
26 simpr 479 . . . . . . . . . 10 ((𝑦𝐴𝑤𝐴) → 𝑤𝐴)
2718, 26anim12i 608 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑤𝐴))
2821eqeq2d 2834 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝐸𝑤) = {𝑢, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
2928cbvriotav 6876 . . . . . . . . 9 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})
301, 2, 3usgredg2vlem2 26521 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑤𝐴) → ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
3127, 29, 30mpisyl 21 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁})
3225, 31eqeq12d 2839 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
3332notbid 310 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ (𝐸𝑦) = (𝐸𝑤) ↔ ¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
34 riotaex 6869 . . . . . . . . . . . 12 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V
3534a1i 11 . . . . . . . . . . 11 (𝑁𝑉 → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V)
36 id 22 . . . . . . . . . . 11 (𝑁𝑉𝑁𝑉)
37 riotaex 6869 . . . . . . . . . . . 12 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V
3837a1i 11 . . . . . . . . . . 11 (𝑁𝑉 → (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V)
39 preq12bg 4600 . . . . . . . . . . 11 ((((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉) ∧ ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉)) → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4035, 36, 38, 36, 39syl22anc 874 . . . . . . . . . 10 (𝑁𝑉 → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4140notbid 310 . . . . . . . . 9 (𝑁𝑉 → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4241adantl 475 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
43 ioran 1013 . . . . . . . . . . 11 (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) ↔ (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))))
44 ianor 1011 . . . . . . . . . . . . 13 (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ↔ (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁))
4523, 29eqeq12i 2838 . . . . . . . . . . . . . . . . 17 ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ↔ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4645notbii 312 . . . . . . . . . . . . . . . 16 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ↔ ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4746biimpi 208 . . . . . . . . . . . . . . 15 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4847a1d 25 . . . . . . . . . . . . . 14 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
49 eqid 2824 . . . . . . . . . . . . . . 15 𝑁 = 𝑁
5049pm2.24i 148 . . . . . . . . . . . . . 14 𝑁 = 𝑁 → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5148, 50jaoi 890 . . . . . . . . . . . . 13 ((¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5244, 51sylbi 209 . . . . . . . . . . . 12 (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5352adantr 474 . . . . . . . . . . 11 ((¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5443, 53sylbi 209 . . . . . . . . . 10 (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5554com12 32 . . . . . . . . 9 (𝐺 ∈ USGraph → (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5655adantr 474 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5742, 56sylbid 232 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5857adantr 474 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5933, 58sylbid 232 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ (𝐸𝑦) = (𝐸𝑤) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
6017, 59sylbid 232 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ 𝑦 = 𝑤 → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
6160con4d 115 . . 3 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
6261ralrimivva 3179 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
63 usgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
64 fveqeq2 6441 . . . 4 (𝑦 = 𝑤 → ((𝐸𝑦) = {𝑧, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
6564riotabidv 6867 . . 3 (𝑦 = 𝑤 → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
6663, 65f1mpt 6772 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤)))
676, 62, 66sylanbrc 580 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880   = wceq 1658  wcel 2166  wral 3116  {crab 3120  Vcvv 3413  {cpr 4398  cmpt 4951  dom cdm 5341  ran crn 5342  1-1wf1 6119  cfv 6122  crio 6864  Vtxcvtx 26293  iEdgciedg 26294  USGraphcusgr 26447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-2o 7826  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-card 9077  df-cda 9304  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-n0 11618  df-z 11704  df-uz 11968  df-fz 12619  df-hash 13410  df-edg 26345  df-umgr 26380  df-usgr 26449
This theorem is referenced by:  usgriedgleord  26523
  Copyright terms: Public domain W3C validator