Step | Hyp | Ref
| Expression |
1 | | usgredg2v.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | usgredg2v.e |
. . . . 5
⊢ 𝐸 = (iEdg‘𝐺) |
3 | | usgredg2v.a |
. . . . 5
⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} |
4 | 1, 2, 3 | usgredg2vlem1 27592 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) ∈ 𝑉) |
5 | 4 | ralrimiva 3103 |
. . 3
⊢ (𝐺 ∈ USGraph →
∀𝑦 ∈ 𝐴 (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) ∈ 𝑉) |
6 | 5 | adantr 481 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑦 ∈ 𝐴 (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) ∈ 𝑉) |
7 | 2 | usgrf1 27542 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→ran 𝐸) |
8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐸:dom 𝐸–1-1→ran 𝐸) |
9 | | elrabi 3618 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} → 𝑦 ∈ dom 𝐸) |
10 | 9, 3 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ dom 𝐸) |
11 | | elrabi 3618 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} → 𝑤 ∈ dom 𝐸) |
12 | 11, 3 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐴 → 𝑤 ∈ dom 𝐸) |
13 | 10, 12 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑦 ∈ dom 𝐸 ∧ 𝑤 ∈ dom 𝐸)) |
14 | | f1fveq 7135 |
. . . . . . . 8
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ (𝑦 ∈ dom 𝐸 ∧ 𝑤 ∈ dom 𝐸)) → ((𝐸‘𝑦) = (𝐸‘𝑤) ↔ 𝑦 = 𝑤)) |
15 | 8, 13, 14 | syl2an 596 |
. . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐸‘𝑦) = (𝐸‘𝑤) ↔ 𝑦 = 𝑤)) |
16 | 15 | bicomd 222 |
. . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑦 = 𝑤 ↔ (𝐸‘𝑦) = (𝐸‘𝑤))) |
17 | 16 | notbid 318 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ 𝑦 = 𝑤 ↔ ¬ (𝐸‘𝑦) = (𝐸‘𝑤))) |
18 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ USGraph) |
19 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
20 | 18, 19 | anim12i 613 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴)) |
21 | | preq1 4669 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → {𝑢, 𝑁} = {𝑧, 𝑁}) |
22 | 21 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → ((𝐸‘𝑦) = {𝑢, 𝑁} ↔ (𝐸‘𝑦) = {𝑧, 𝑁})) |
23 | 22 | cbvriotavw 7242 |
. . . . . . . . 9
⊢
(℩𝑢
∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) |
24 | 1, 2, 3 | usgredg2vlem2 27593 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴) → ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) → (𝐸‘𝑦) = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁})) |
25 | 20, 23, 24 | mpisyl 21 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐸‘𝑦) = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁}) |
26 | | an3 656 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐺 ∈ USGraph ∧ 𝑤 ∈ 𝐴)) |
27 | 21 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → ((𝐸‘𝑤) = {𝑢, 𝑁} ↔ (𝐸‘𝑤) = {𝑧, 𝑁})) |
28 | 27 | cbvriotavw 7242 |
. . . . . . . . 9
⊢
(℩𝑢
∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}) |
29 | 1, 2, 3 | usgredg2vlem2 27593 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ 𝑤 ∈ 𝐴) → ((℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}) → (𝐸‘𝑤) = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁})) |
30 | 26, 28, 29 | mpisyl 21 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝐸‘𝑤) = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁}) |
31 | 25, 30 | eqeq12d 2754 |
. . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝐸‘𝑦) = (𝐸‘𝑤) ↔ {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁})) |
32 | 31 | notbid 318 |
. . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ (𝐸‘𝑦) = (𝐸‘𝑤) ↔ ¬ {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁})) |
33 | | riotaex 7236 |
. . . . . . . . . . . 12
⊢
(℩𝑢
∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) ∈ V |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ 𝑉 → (℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) ∈ V) |
35 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) |
36 | | riotaex 7236 |
. . . . . . . . . . . 12
⊢
(℩𝑢
∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∈ V |
37 | 36 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ 𝑉 → (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∈ V) |
38 | | preq12bg 4784 |
. . . . . . . . . . 11
⊢
((((℩𝑢
∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) ∈ V ∧ 𝑁 ∈ 𝑉) ∧ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∈ V ∧ 𝑁 ∈ 𝑉)) → ({(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))))) |
39 | 34, 35, 37, 35, 38 | syl22anc 836 |
. . . . . . . . . 10
⊢ (𝑁 ∈ 𝑉 → ({(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))))) |
40 | 39 | notbid 318 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → (¬ {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))))) |
41 | 40 | adantl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (¬ {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))))) |
42 | | ioran 981 |
. . . . . . . . . . 11
⊢ (¬
(((℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))) ↔ (¬ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁})))) |
43 | | ianor 979 |
. . . . . . . . . . . . 13
⊢ (¬
((℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ↔ (¬ (℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁)) |
44 | 23, 28 | eqeq12i 2756 |
. . . . . . . . . . . . . . . . 17
⊢
((℩𝑢
∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁})) |
45 | 44 | notbii 320 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ↔ ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁})) |
46 | 45 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (¬
(℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁})) |
47 | 46 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
(℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) → (𝐺 ∈ USGraph → ¬
(℩𝑧 ∈
𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ 𝑁 = 𝑁 |
49 | 48 | pm2.24i 150 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑁 = 𝑁 → (𝐺 ∈ USGraph → ¬
(℩𝑧 ∈
𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
50 | 47, 49 | jaoi 854 |
. . . . . . . . . . . . 13
⊢ ((¬
(℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬
(℩𝑧 ∈
𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
51 | 43, 50 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (¬
((℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬
(℩𝑧 ∈
𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
52 | 51 | adantr 481 |
. . . . . . . . . . 11
⊢ ((¬
((℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬
(℩𝑧 ∈
𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
53 | 42, 52 | sylbi 216 |
. . . . . . . . . 10
⊢ (¬
(((℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬
(℩𝑧 ∈
𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
54 | 53 | com12 32 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (¬
(((℩𝑢 ∈
𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))) → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
55 | 54 | adantr 481 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (¬ (((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}) = 𝑁 ∧ 𝑁 = (℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}))) → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
56 | 41, 55 | sylbid 239 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (¬ {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
57 | 56 | adantr 481 |
. . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ {(℩𝑢 ∈ 𝑉 (𝐸‘𝑦) = {𝑢, 𝑁}), 𝑁} = {(℩𝑢 ∈ 𝑉 (𝐸‘𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
58 | 32, 57 | sylbid 239 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ (𝐸‘𝑦) = (𝐸‘𝑤) → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
59 | 17, 58 | sylbid 239 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (¬ 𝑦 = 𝑤 → ¬ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}))) |
60 | 59 | con4d 115 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤)) |
61 | 60 | ralrimivva 3123 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑦 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤)) |
62 | | usgredg2v.f |
. . 3
⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁})) |
63 | | fveqeq2 6783 |
. . . 4
⊢ (𝑦 = 𝑤 → ((𝐸‘𝑦) = {𝑧, 𝑁} ↔ (𝐸‘𝑤) = {𝑧, 𝑁})) |
64 | 63 | riotabidv 7234 |
. . 3
⊢ (𝑦 = 𝑤 → (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁})) |
65 | 62, 64 | f1mpt 7134 |
. 2
⊢ (𝐹:𝐴–1-1→𝑉 ↔ (∀𝑦 ∈ 𝐴 (℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((℩𝑧 ∈ 𝑉 (𝐸‘𝑦) = {𝑧, 𝑁}) = (℩𝑧 ∈ 𝑉 (𝐸‘𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))) |
66 | 6, 61, 65 | sylanbrc 583 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1→𝑉) |