MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg2v Structured version   Visualization version   GIF version

Theorem usgredg2v 29172
Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
usgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
Assertion
Ref Expression
usgredg2v ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑦,𝐴   𝑦,𝐸,𝑥,𝑧   𝑦,𝐺   𝑦,𝑁   𝑦,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2v
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 usgredg2v.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
41, 2, 3usgredg2vlem1 29170 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
54ralrimiva 3121 . . 3 (𝐺 ∈ USGraph → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
65adantr 480 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
72usgrf1 29117 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→ran 𝐸)
87adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐸:dom 𝐸1-1→ran 𝐸)
9 elrabi 3643 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑦 ∈ dom 𝐸)
109, 3eleq2s 2846 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ dom 𝐸)
11 elrabi 3643 . . . . . . . . . 10 (𝑤 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑤 ∈ dom 𝐸)
1211, 3eleq2s 2846 . . . . . . . . 9 (𝑤𝐴𝑤 ∈ dom 𝐸)
1310, 12anim12i 613 . . . . . . . 8 ((𝑦𝐴𝑤𝐴) → (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸))
14 f1fveq 7199 . . . . . . . 8 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
158, 13, 14syl2an 596 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
1615bicomd 223 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝑦 = 𝑤 ↔ (𝐸𝑦) = (𝐸𝑤)))
1716notbid 318 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ 𝑦 = 𝑤 ↔ ¬ (𝐸𝑦) = (𝐸𝑤)))
18 simpl 482 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐺 ∈ USGraph)
19 simpl 482 . . . . . . . . . 10 ((𝑦𝐴𝑤𝐴) → 𝑦𝐴)
2018, 19anim12i 613 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑦𝐴))
21 preq1 4685 . . . . . . . . . . 11 (𝑢 = 𝑧 → {𝑢, 𝑁} = {𝑧, 𝑁})
2221eqeq2d 2740 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝐸𝑦) = {𝑢, 𝑁} ↔ (𝐸𝑦) = {𝑧, 𝑁}))
2322cbvriotavw 7316 . . . . . . . . 9 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})
241, 2, 3usgredg2vlem2 29171 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁}))
2520, 23, 24mpisyl 21 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁})
26 an3 659 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑤𝐴))
2721eqeq2d 2740 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝐸𝑤) = {𝑢, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
2827cbvriotavw 7316 . . . . . . . . 9 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})
291, 2, 3usgredg2vlem2 29171 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑤𝐴) → ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
3026, 28, 29mpisyl 21 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁})
3125, 30eqeq12d 2745 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
3231notbid 318 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ (𝐸𝑦) = (𝐸𝑤) ↔ ¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
33 riotaex 7310 . . . . . . . . . . . 12 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V
3433a1i 11 . . . . . . . . . . 11 (𝑁𝑉 → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V)
35 id 22 . . . . . . . . . . 11 (𝑁𝑉𝑁𝑉)
36 riotaex 7310 . . . . . . . . . . . 12 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V
3736a1i 11 . . . . . . . . . . 11 (𝑁𝑉 → (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V)
38 preq12bg 4804 . . . . . . . . . . 11 ((((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉) ∧ ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉)) → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
3934, 35, 37, 35, 38syl22anc 838 . . . . . . . . . 10 (𝑁𝑉 → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4039notbid 318 . . . . . . . . 9 (𝑁𝑉 → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4140adantl 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
42 ioran 985 . . . . . . . . . . 11 (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) ↔ (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))))
43 ianor 983 . . . . . . . . . . . . 13 (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ↔ (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁))
4423, 28eqeq12i 2747 . . . . . . . . . . . . . . . . 17 ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ↔ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4544notbii 320 . . . . . . . . . . . . . . . 16 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ↔ ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4645biimpi 216 . . . . . . . . . . . . . . 15 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4746a1d 25 . . . . . . . . . . . . . 14 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
48 eqid 2729 . . . . . . . . . . . . . . 15 𝑁 = 𝑁
4948pm2.24i 150 . . . . . . . . . . . . . 14 𝑁 = 𝑁 → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5047, 49jaoi 857 . . . . . . . . . . . . 13 ((¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5143, 50sylbi 217 . . . . . . . . . . . 12 (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5251adantr 480 . . . . . . . . . . 11 ((¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5342, 52sylbi 217 . . . . . . . . . 10 (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5453com12 32 . . . . . . . . 9 (𝐺 ∈ USGraph → (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5554adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5641, 55sylbid 240 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5756adantr 480 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5832, 57sylbid 240 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ (𝐸𝑦) = (𝐸𝑤) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5917, 58sylbid 240 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ 𝑦 = 𝑤 → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
6059con4d 115 . . 3 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
6160ralrimivva 3172 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
62 usgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
63 fveqeq2 6831 . . . 4 (𝑦 = 𝑤 → ((𝐸𝑦) = {𝑧, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
6463riotabidv 7308 . . 3 (𝑦 = 𝑤 → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
6562, 64f1mpt 7198 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤)))
666, 61, 65sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  {cpr 4579  cmpt 5173  dom cdm 5619  ran crn 5620  1-1wf1 6479  cfv 6482  crio 7305  Vtxcvtx 28941  iEdgciedg 28942  USGraphcusgr 29094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-edg 28993  df-umgr 29028  df-usgr 29096
This theorem is referenced by:  usgriedgleord  29173
  Copyright terms: Public domain W3C validator