Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricer Structured version   Visualization version   GIF version

Theorem gricer 48034
Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricer ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph

Proof of Theorem gricer
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gricref 48030 . 2 (𝑔 ∈ UHGraph → 𝑔𝑔𝑟 𝑔)
2 gricsym 48031 . 2 (𝑔 ∈ UHGraph → (𝑔𝑔𝑟 𝑔𝑟 𝑔))
3 grictr 48033 . . 3 ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘)
43a1i 11 . 2 (𝑔 ∈ UHGraph → ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘))
51, 2, 4brinxper 8651 1 ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  cin 3896   class class class wbr 5089   × cxp 5612   Er wer 8619  UHGraphcuhgr 29034  𝑔𝑟 cgric 47986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-map 8752  df-uhgr 29036  df-grim 47988  df-gric 47991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator