Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricer Structured version   Visualization version   GIF version

Theorem gricer 47777
Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricer ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph

Proof of Theorem gricer
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gricref 47773 . 2 (𝑔 ∈ UHGraph → 𝑔𝑔𝑟 𝑔)
2 gricsym 47774 . 2 (𝑔 ∈ UHGraph → (𝑔𝑔𝑟 𝑔𝑟 𝑔))
3 grictr 47776 . . 3 ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘)
43a1i 11 . 2 (𝑔 ∈ UHGraph → ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘))
51, 2, 4brinxper 8792 1 ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cin 3975   class class class wbr 5166   × cxp 5698   Er wer 8760  UHGraphcuhgr 29091  𝑔𝑟 cgric 47746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-er 8763  df-map 8886  df-uhgr 29093  df-grim 47748  df-gric 47751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator