Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricer Structured version   Visualization version   GIF version

Theorem gricer 47928
Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.) (Proof shortened by AV, 11-Jul-2025.)
Assertion
Ref Expression
gricer ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph

Proof of Theorem gricer
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gricref 47924 . 2 (𝑔 ∈ UHGraph → 𝑔𝑔𝑟 𝑔)
2 gricsym 47925 . 2 (𝑔 ∈ UHGraph → (𝑔𝑔𝑟 𝑔𝑟 𝑔))
3 grictr 47927 . . 3 ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘)
43a1i 11 . 2 (𝑔 ∈ UHGraph → ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘))
51, 2, 4brinxper 8661 1 ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cin 3904   class class class wbr 5095   × cxp 5621   Er wer 8629  UHGraphcuhgr 29020  𝑔𝑟 cgric 47880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-er 8632  df-map 8762  df-uhgr 29022  df-grim 47882  df-gric 47885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator