Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricer Structured version   Visualization version   GIF version

Theorem gricer 47376
Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.)
Assertion
Ref Expression
gricer ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph

Proof of Theorem gricer
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5816 . 2 Rel ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))
2 brxp 5727 . . . . 5 (𝑔(UHGraph × UHGraph) ↔ (𝑔 ∈ UHGraph ∧ ∈ UHGraph))
3 gricsym 47373 . . . . . . 7 (𝑔 ∈ UHGraph → (𝑔𝑔𝑟 𝑔𝑟 𝑔))
43adantr 479 . . . . . 6 ((𝑔 ∈ UHGraph ∧ ∈ UHGraph) → (𝑔𝑔𝑟 𝑔𝑟 𝑔))
5 ancom 459 . . . . . . 7 ((𝑔 ∈ UHGraph ∧ ∈ UHGraph) ↔ ( ∈ UHGraph ∧ 𝑔 ∈ UHGraph))
6 brxp 5727 . . . . . . 7 ((UHGraph × UHGraph)𝑔 ↔ ( ∈ UHGraph ∧ 𝑔 ∈ UHGraph))
75, 6sylbb2 237 . . . . . 6 ((𝑔 ∈ UHGraph ∧ ∈ UHGraph) → (UHGraph × UHGraph)𝑔)
84, 7jctird 525 . . . . 5 ((𝑔 ∈ UHGraph ∧ ∈ UHGraph) → (𝑔𝑔𝑟 → (𝑔𝑟 𝑔(UHGraph × UHGraph)𝑔)))
92, 8sylbi 216 . . . 4 (𝑔(UHGraph × UHGraph) → (𝑔𝑔𝑟 → (𝑔𝑟 𝑔(UHGraph × UHGraph)𝑔)))
109impcom 406 . . 3 ((𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)) → (𝑔𝑟 𝑔(UHGraph × UHGraph)𝑔))
11 brin 5201 . . 3 (𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) ↔ (𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)))
12 brin 5201 . . 3 (( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔 ↔ (𝑔𝑟 𝑔(UHGraph × UHGraph)𝑔))
1310, 11, 123imtr4i 291 . 2 (𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔)
14 grictr 47375 . . . . 5 ((𝑔𝑔𝑟 𝑔𝑟 𝑘) → 𝑔𝑔𝑟 𝑘)
1514ad2ant2r 745 . . . 4 (((𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)) ∧ (𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘)) → 𝑔𝑔𝑟 𝑘)
16 an3 657 . . . . . . . . 9 (((𝑔 ∈ UHGraph ∧ ∈ UHGraph) ∧ ( ∈ UHGraph ∧ 𝑘 ∈ UHGraph)) → (𝑔 ∈ UHGraph ∧ 𝑘 ∈ UHGraph))
1716ex 411 . . . . . . . 8 ((𝑔 ∈ UHGraph ∧ ∈ UHGraph) → (( ∈ UHGraph ∧ 𝑘 ∈ UHGraph) → (𝑔 ∈ UHGraph ∧ 𝑘 ∈ UHGraph)))
18 brxp 5727 . . . . . . . . 9 ((UHGraph × UHGraph)𝑘 ↔ ( ∈ UHGraph ∧ 𝑘 ∈ UHGraph))
19 brxp 5727 . . . . . . . . 9 (𝑔(UHGraph × UHGraph)𝑘 ↔ (𝑔 ∈ UHGraph ∧ 𝑘 ∈ UHGraph))
2018, 19imbi12i 349 . . . . . . . 8 (((UHGraph × UHGraph)𝑘𝑔(UHGraph × UHGraph)𝑘) ↔ (( ∈ UHGraph ∧ 𝑘 ∈ UHGraph) → (𝑔 ∈ UHGraph ∧ 𝑘 ∈ UHGraph)))
2117, 2, 203imtr4i 291 . . . . . . 7 (𝑔(UHGraph × UHGraph) → ((UHGraph × UHGraph)𝑘𝑔(UHGraph × UHGraph)𝑘))
2221adantld 489 . . . . . 6 (𝑔(UHGraph × UHGraph) → ((𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘) → 𝑔(UHGraph × UHGraph)𝑘))
2322adantl 480 . . . . 5 ((𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)) → ((𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘) → 𝑔(UHGraph × UHGraph)𝑘))
2423imp 405 . . . 4 (((𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)) ∧ (𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘)) → 𝑔(UHGraph × UHGraph)𝑘)
2515, 24jca 510 . . 3 (((𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)) ∧ (𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘)) → (𝑔𝑔𝑟 𝑘𝑔(UHGraph × UHGraph)𝑘))
26 brin 5201 . . . 4 (( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘 ↔ (𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘))
2711, 26anbi12i 626 . . 3 ((𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘) ↔ ((𝑔𝑔𝑟 𝑔(UHGraph × UHGraph)) ∧ (𝑔𝑟 𝑘(UHGraph × UHGraph)𝑘)))
28 brin 5201 . . 3 (𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘 ↔ (𝑔𝑔𝑟 𝑘𝑔(UHGraph × UHGraph)𝑘))
2925, 27, 283imtr4i 291 . 2 ((𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘) → 𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘)
30 gricref 47372 . . . . 5 (𝑔 ∈ UHGraph → 𝑔𝑔𝑟 𝑔)
31 id 22 . . . . . 6 (𝑔 ∈ UHGraph → 𝑔 ∈ UHGraph)
32 brxp 5727 . . . . . 6 (𝑔(UHGraph × UHGraph)𝑔 ↔ (𝑔 ∈ UHGraph ∧ 𝑔 ∈ UHGraph))
3331, 31, 32sylanbrc 581 . . . . 5 (𝑔 ∈ UHGraph → 𝑔(UHGraph × UHGraph)𝑔)
3430, 33jca 510 . . . 4 (𝑔 ∈ UHGraph → (𝑔𝑔𝑟 𝑔𝑔(UHGraph × UHGraph)𝑔))
3532simplbi 496 . . . . 5 (𝑔(UHGraph × UHGraph)𝑔𝑔 ∈ UHGraph)
3635adantl 480 . . . 4 ((𝑔𝑔𝑟 𝑔𝑔(UHGraph × UHGraph)𝑔) → 𝑔 ∈ UHGraph)
3734, 36impbii 208 . . 3 (𝑔 ∈ UHGraph ↔ (𝑔𝑔𝑟 𝑔𝑔(UHGraph × UHGraph)𝑔))
38 brin 5201 . . 3 (𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔 ↔ (𝑔𝑔𝑟 𝑔𝑔(UHGraph × UHGraph)𝑔))
3937, 38bitr4i 277 . 2 (𝑔 ∈ UHGraph ↔ 𝑔( ≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔)
401, 13, 29, 39iseri 8752 1 ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  cin 3943   class class class wbr 5149   × cxp 5676   Er wer 8722  UHGraphcuhgr 28941  𝑔𝑟 cgric 47346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-1o 8487  df-er 8725  df-map 8847  df-uhgr 28943  df-grim 47348  df-gric 47351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator