Step | Hyp | Ref
| Expression |
1 | | relinxp 5816 |
. 2
⊢ Rel (
≃𝑔𝑟 ∩ (UHGraph ×
UHGraph)) |
2 | | brxp 5727 |
. . . . 5
⊢ (𝑔(UHGraph × UHGraph)ℎ ↔ (𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph)) |
3 | | gricsym 47373 |
. . . . . . 7
⊢ (𝑔 ∈ UHGraph → (𝑔
≃𝑔𝑟 ℎ → ℎ ≃𝑔𝑟 𝑔)) |
4 | 3 | adantr 479 |
. . . . . 6
⊢ ((𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph) → (𝑔
≃𝑔𝑟 ℎ → ℎ ≃𝑔𝑟 𝑔)) |
5 | | ancom 459 |
. . . . . . 7
⊢ ((𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph) ↔ (ℎ ∈ UHGraph ∧ 𝑔 ∈
UHGraph)) |
6 | | brxp 5727 |
. . . . . . 7
⊢ (ℎ(UHGraph × UHGraph)𝑔 ↔ (ℎ ∈ UHGraph ∧ 𝑔 ∈ UHGraph)) |
7 | 5, 6 | sylbb2 237 |
. . . . . 6
⊢ ((𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph) → ℎ(UHGraph × UHGraph)𝑔) |
8 | 4, 7 | jctird 525 |
. . . . 5
⊢ ((𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph) → (𝑔
≃𝑔𝑟 ℎ → (ℎ ≃𝑔𝑟 𝑔 ∧ ℎ(UHGraph × UHGraph)𝑔))) |
9 | 2, 8 | sylbi 216 |
. . . 4
⊢ (𝑔(UHGraph × UHGraph)ℎ → (𝑔 ≃𝑔𝑟 ℎ → (ℎ ≃𝑔𝑟 𝑔 ∧ ℎ(UHGraph × UHGraph)𝑔))) |
10 | 9 | impcom 406 |
. . 3
⊢ ((𝑔
≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ) → (ℎ ≃𝑔𝑟 𝑔 ∧ ℎ(UHGraph × UHGraph)𝑔)) |
11 | | brin 5201 |
. . 3
⊢ (𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))ℎ ↔ (𝑔 ≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ)) |
12 | | brin 5201 |
. . 3
⊢ (ℎ(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔 ↔ (ℎ ≃𝑔𝑟 𝑔 ∧ ℎ(UHGraph × UHGraph)𝑔)) |
13 | 10, 11, 12 | 3imtr4i 291 |
. 2
⊢ (𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))ℎ → ℎ( ≃𝑔𝑟 ∩
(UHGraph × UHGraph))𝑔) |
14 | | grictr 47375 |
. . . . 5
⊢ ((𝑔
≃𝑔𝑟 ℎ ∧ ℎ ≃𝑔𝑟 𝑘) → 𝑔 ≃𝑔𝑟 𝑘) |
15 | 14 | ad2ant2r 745 |
. . . 4
⊢ (((𝑔
≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ) ∧ (ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘)) → 𝑔 ≃𝑔𝑟 𝑘) |
16 | | an3 657 |
. . . . . . . . 9
⊢ (((𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph) ∧ (ℎ ∈ UHGraph ∧ 𝑘 ∈ UHGraph)) → (𝑔 ∈ UHGraph ∧ 𝑘 ∈
UHGraph)) |
17 | 16 | ex 411 |
. . . . . . . 8
⊢ ((𝑔 ∈ UHGraph ∧ ℎ ∈ UHGraph) → ((ℎ ∈ UHGraph ∧ 𝑘 ∈ UHGraph) → (𝑔 ∈ UHGraph ∧ 𝑘 ∈
UHGraph))) |
18 | | brxp 5727 |
. . . . . . . . 9
⊢ (ℎ(UHGraph × UHGraph)𝑘 ↔ (ℎ ∈ UHGraph ∧ 𝑘 ∈ UHGraph)) |
19 | | brxp 5727 |
. . . . . . . . 9
⊢ (𝑔(UHGraph × UHGraph)𝑘 ↔ (𝑔 ∈ UHGraph ∧ 𝑘 ∈ UHGraph)) |
20 | 18, 19 | imbi12i 349 |
. . . . . . . 8
⊢ ((ℎ(UHGraph × UHGraph)𝑘 → 𝑔(UHGraph × UHGraph)𝑘) ↔ ((ℎ ∈ UHGraph ∧ 𝑘 ∈ UHGraph) → (𝑔 ∈ UHGraph ∧ 𝑘 ∈ UHGraph))) |
21 | 17, 2, 20 | 3imtr4i 291 |
. . . . . . 7
⊢ (𝑔(UHGraph × UHGraph)ℎ → (ℎ(UHGraph × UHGraph)𝑘 → 𝑔(UHGraph × UHGraph)𝑘)) |
22 | 21 | adantld 489 |
. . . . . 6
⊢ (𝑔(UHGraph × UHGraph)ℎ → ((ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘) → 𝑔(UHGraph × UHGraph)𝑘)) |
23 | 22 | adantl 480 |
. . . . 5
⊢ ((𝑔
≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ) → ((ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘) → 𝑔(UHGraph × UHGraph)𝑘)) |
24 | 23 | imp 405 |
. . . 4
⊢ (((𝑔
≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ) ∧ (ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘)) → 𝑔(UHGraph × UHGraph)𝑘) |
25 | 15, 24 | jca 510 |
. . 3
⊢ (((𝑔
≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ) ∧ (ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘)) → (𝑔 ≃𝑔𝑟 𝑘 ∧ 𝑔(UHGraph × UHGraph)𝑘)) |
26 | | brin 5201 |
. . . 4
⊢ (ℎ(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘 ↔ (ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘)) |
27 | 11, 26 | anbi12i 626 |
. . 3
⊢ ((𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))ℎ ∧ ℎ( ≃𝑔𝑟 ∩
(UHGraph × UHGraph))𝑘) ↔ ((𝑔 ≃𝑔𝑟 ℎ ∧ 𝑔(UHGraph × UHGraph)ℎ) ∧ (ℎ ≃𝑔𝑟 𝑘 ∧ ℎ(UHGraph × UHGraph)𝑘))) |
28 | | brin 5201 |
. . 3
⊢ (𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑘 ↔ (𝑔 ≃𝑔𝑟 𝑘 ∧ 𝑔(UHGraph × UHGraph)𝑘)) |
29 | 25, 27, 28 | 3imtr4i 291 |
. 2
⊢ ((𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))ℎ ∧ ℎ( ≃𝑔𝑟 ∩
(UHGraph × UHGraph))𝑘) → 𝑔( ≃𝑔𝑟 ∩
(UHGraph × UHGraph))𝑘) |
30 | | gricref 47372 |
. . . . 5
⊢ (𝑔 ∈ UHGraph → 𝑔
≃𝑔𝑟 𝑔) |
31 | | id 22 |
. . . . . 6
⊢ (𝑔 ∈ UHGraph → 𝑔 ∈
UHGraph) |
32 | | brxp 5727 |
. . . . . 6
⊢ (𝑔(UHGraph × UHGraph)𝑔 ↔ (𝑔 ∈ UHGraph ∧ 𝑔 ∈ UHGraph)) |
33 | 31, 31, 32 | sylanbrc 581 |
. . . . 5
⊢ (𝑔 ∈ UHGraph → 𝑔(UHGraph × UHGraph)𝑔) |
34 | 30, 33 | jca 510 |
. . . 4
⊢ (𝑔 ∈ UHGraph → (𝑔
≃𝑔𝑟 𝑔 ∧ 𝑔(UHGraph × UHGraph)𝑔)) |
35 | 32 | simplbi 496 |
. . . . 5
⊢ (𝑔(UHGraph × UHGraph)𝑔 → 𝑔 ∈ UHGraph) |
36 | 35 | adantl 480 |
. . . 4
⊢ ((𝑔
≃𝑔𝑟 𝑔 ∧ 𝑔(UHGraph × UHGraph)𝑔) → 𝑔 ∈ UHGraph) |
37 | 34, 36 | impbii 208 |
. . 3
⊢ (𝑔 ∈ UHGraph ↔ (𝑔
≃𝑔𝑟 𝑔 ∧ 𝑔(UHGraph × UHGraph)𝑔)) |
38 | | brin 5201 |
. . 3
⊢ (𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔 ↔ (𝑔 ≃𝑔𝑟 𝑔 ∧ 𝑔(UHGraph × UHGraph)𝑔)) |
39 | 37, 38 | bitr4i 277 |
. 2
⊢ (𝑔 ∈ UHGraph ↔ 𝑔(
≃𝑔𝑟 ∩ (UHGraph × UHGraph))𝑔) |
40 | 1, 13, 29, 39 | iseri 8752 |
1
⊢ (
≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er
UHGraph |