|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anabsi8 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 26-Sep-1999.) | 
| Ref | Expression | 
|---|---|
| anabsi8.1 | ⊢ (𝜓 → ((𝜓 ∧ 𝜑) → 𝜒)) | 
| Ref | Expression | 
|---|---|
| anabsi8 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anabsi8.1 | . . 3 ⊢ (𝜓 → ((𝜓 ∧ 𝜑) → 𝜒)) | |
| 2 | 1 | anabsi5 669 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | 
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: subuhgr 29303 subupgr 29304 subumgr 29305 subusgr 29306 | 
| Copyright terms: Public domain | W3C validator |