MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi8 Structured version   Visualization version   GIF version

Theorem anabsi8 669
Description: Absorption of antecedent into conjunction. (Contributed by NM, 26-Sep-1999.)
Hypothesis
Ref Expression
anabsi8.1 (𝜓 → ((𝜓𝜑) → 𝜒))
Assertion
Ref Expression
anabsi8 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi8
StepHypRef Expression
1 anabsi8.1 . . 3 (𝜓 → ((𝜓𝜑) → 𝜒))
21anabsi5 666 . 2 ((𝜓𝜑) → 𝜒)
32ancoms 459 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  subuhgr  27641  subupgr  27642  subumgr  27643  subusgr  27644
  Copyright terms: Public domain W3C validator