MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subusgr Structured version   Visualization version   GIF version

Theorem subusgr 29324
Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.)
Assertion
Ref Expression
subusgr ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph)

Proof of Theorem subusgr
Dummy variables 𝑥 𝑒 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2740 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2740 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 29309 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 usgruhgr 29221 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 29317 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 579 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 458 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → Fun (iEdg‘𝑆))
1110funfnd 6609 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1211adantl 481 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
13 simplrl 776 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
14 usgrumgr 29216 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
1514adantl 481 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝐺 ∈ UMGraph)
1615adantl 481 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → 𝐺 ∈ UMGraph)
1716adantr 480 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UMGraph)
18 simpr 484 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
191, 3subumgredg2 29320 . . . . . . . . . 10 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2013, 17, 18, 19syl3anc 1371 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2120ralrimiva 3152 . . . . . . . 8 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
22 fnfvrnss 7155 . . . . . . . 8 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2312, 21, 22syl2anc 583 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
24 df-f 6577 . . . . . . 7 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
2512, 23, 24sylanbrc 582 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
26 simp2 1137 . . . . . . . . 9 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
272, 4usgrfs 29192 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2})
28 df-f1 6578 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun (iEdg‘𝐺)))
29 ffun 6750 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → Fun (iEdg‘𝐺))
3029anim1i 614 . . . . . . . . . . . 12 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun (iEdg‘𝐺)) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3128, 30sylbi 217 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3227, 31syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3332adantl 481 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3426, 33anim12ci 613 . . . . . . . 8 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
35 df-3an 1089 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) ↔ ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
3634, 35sylibr 234 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
37 f1ssf1 6894 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) → Fun (iEdg‘𝑆))
3836, 37syl 17 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → Fun (iEdg‘𝑆))
39 df-f1 6578 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ∧ Fun (iEdg‘𝑆)))
4025, 38, 39sylanbrc 582 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
41 subgrv 29305 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
421, 3isusgrs 29191 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4342adantr 480 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4441, 43syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4544adantr 480 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4645adantl 481 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4740, 46mpbird 257 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → 𝑆 ∈ USGraph)
4847ex 412 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝑆 ∈ USGraph))
496, 48syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝑆 ∈ USGraph))
5049anabsi8 671 1 ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622   class class class wbr 5166  ccnv 5699  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UHGraphcuhgr 29091  UMGraphcumgr 29116  USGraphcusgr 29184   SubGraph csubgr 29302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-subgr 29303
This theorem is referenced by:  usgrspan  29330  isubgrusgr  47742
  Copyright terms: Public domain W3C validator