MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subusgr Structured version   Visualization version   GIF version

Theorem subusgr 27063
Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.)
Assertion
Ref Expression
subusgr ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph)

Proof of Theorem subusgr
Dummy variables 𝑥 𝑒 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2819 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2819 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2819 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2819 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27048 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 usgruhgr 26960 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 27056 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 582 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 461 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → Fun (iEdg‘𝑆))
1110funfnd 6379 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1211adantl 484 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
13 simplrl 775 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
14 usgrumgr 26956 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
1514adantl 484 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝐺 ∈ UMGraph)
1615adantl 484 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → 𝐺 ∈ UMGraph)
1716adantr 483 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UMGraph)
18 simpr 487 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
191, 3subumgredg2 27059 . . . . . . . . . 10 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2013, 17, 18, 19syl3anc 1366 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2120ralrimiva 3180 . . . . . . . 8 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
22 fnfvrnss 6877 . . . . . . . 8 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2312, 21, 22syl2anc 586 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
24 df-f 6352 . . . . . . 7 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
2512, 23, 24sylanbrc 585 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
26 simp2 1132 . . . . . . . . 9 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
272, 4usgrfs 26934 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2})
28 df-f1 6353 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun (iEdg‘𝐺)))
29 ffun 6510 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → Fun (iEdg‘𝐺))
3029anim1i 616 . . . . . . . . . . . 12 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun (iEdg‘𝐺)) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3128, 30sylbi 219 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3227, 31syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3332adantl 484 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3426, 33anim12ci 615 . . . . . . . 8 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
35 df-3an 1084 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) ↔ ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
3634, 35sylibr 236 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
37 f1ssf1 6639 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) → Fun (iEdg‘𝑆))
3836, 37syl 17 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → Fun (iEdg‘𝑆))
39 df-f1 6353 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ∧ Fun (iEdg‘𝑆)))
4025, 38, 39sylanbrc 585 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
41 subgrv 27044 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
421, 3isusgrs 26933 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4342adantr 483 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4441, 43syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4544adantr 483 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4645adantl 484 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4740, 46mpbird 259 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → 𝑆 ∈ USGraph)
4847ex 415 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝑆 ∈ USGraph))
496, 48syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝑆 ∈ USGraph))
5049anabsi8 670 1 ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  {crab 3140  Vcvv 3493  wss 3934  𝒫 cpw 4537   class class class wbr 5057  ccnv 5547  dom cdm 5548  ran crn 5549  Fun wfun 6342   Fn wfn 6343  wf 6344  1-1wf1 6345  cfv 6348  2c2 11684  chash 13682  Vtxcvtx 26773  iEdgciedg 26774  Edgcedg 26824  UHGraphcuhgr 26833  UMGraphcumgr 26858  USGraphcusgr 26926   SubGraph csubgr 27041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-hash 13683  df-edg 26825  df-uhgr 26835  df-upgr 26859  df-umgr 26860  df-uspgr 26927  df-usgr 26928  df-subgr 27042
This theorem is referenced by:  usgrspan  27069
  Copyright terms: Public domain W3C validator