MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subusgr Structured version   Visualization version   GIF version

Theorem subusgr 27331
Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 27-Nov-2020.)
Assertion
Ref Expression
subusgr ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph)

Proof of Theorem subusgr
Dummy variables 𝑥 𝑒 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2736 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2736 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27316 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 usgruhgr 27228 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 27324 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 583 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 462 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → Fun (iEdg‘𝑆))
1110funfnd 6389 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1211adantl 485 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
13 simplrl 777 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
14 usgrumgr 27224 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
1514adantl 485 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝐺 ∈ UMGraph)
1615adantl 485 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → 𝐺 ∈ UMGraph)
1716adantr 484 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UMGraph)
18 simpr 488 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
191, 3subumgredg2 27327 . . . . . . . . . 10 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2013, 17, 18, 19syl3anc 1373 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2120ralrimiva 3095 . . . . . . . 8 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
22 fnfvrnss 6915 . . . . . . . 8 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
2312, 21, 22syl2anc 587 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
24 df-f 6362 . . . . . . 7 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
2512, 23, 24sylanbrc 586 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
26 simp2 1139 . . . . . . . . 9 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
272, 4usgrfs 27202 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2})
28 df-f1 6363 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun (iEdg‘𝐺)))
29 ffun 6526 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → Fun (iEdg‘𝐺))
3029anim1i 618 . . . . . . . . . . . 12 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun (iEdg‘𝐺)) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3128, 30sylbi 220 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3227, 31syl 17 . . . . . . . . . 10 (𝐺 ∈ USGraph → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3332adantl 485 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)))
3426, 33anim12ci 617 . . . . . . . 8 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
35 df-3an 1091 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) ↔ ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
3634, 35sylibr 237 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)))
37 f1ssf1 6670 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) → Fun (iEdg‘𝑆))
3836, 37syl 17 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → Fun (iEdg‘𝑆))
39 df-f1 6363 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ∧ Fun (iEdg‘𝑆)))
4025, 38, 39sylanbrc 586 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})
41 subgrv 27312 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
421, 3isusgrs 27201 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4342adantr 484 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4441, 43syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4544adantr 484 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4645adantl 485 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}))
4740, 46mpbird 260 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ USGraph)) → 𝑆 ∈ USGraph)
4847ex 416 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝑆 ∈ USGraph))
496, 48syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ USGraph) → 𝑆 ∈ USGraph))
5049anabsi8 672 1 ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  {crab 3055  Vcvv 3398  wss 3853  𝒫 cpw 4499   class class class wbr 5039  ccnv 5535  dom cdm 5536  ran crn 5537  Fun wfun 6352   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358  2c2 11850  chash 13861  Vtxcvtx 27041  iEdgciedg 27042  Edgcedg 27092  UHGraphcuhgr 27101  UMGraphcumgr 27126  USGraphcusgr 27194   SubGraph csubgr 27309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-hash 13862  df-edg 27093  df-uhgr 27103  df-upgr 27127  df-umgr 27128  df-uspgr 27195  df-usgr 27196  df-subgr 27310
This theorem is referenced by:  usgrspan  27337
  Copyright terms: Public domain W3C validator