Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
2 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
4 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
5 | | eqid 2738 |
. . . 4
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
6 | 1, 2, 3, 4, 5 | subgrprop2 27544 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | | usgruhgr 27456 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UHGraph) |
8 | | subgruhgrfun 27552 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
9 | 7, 8 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
10 | 9 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → Fun
(iEdg‘𝑆)) |
11 | 10 | funfnd 6449 |
. . . . . . . 8
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆)) |
12 | 11 | adantl 481 |
. . . . . . 7
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆)) |
13 | | simplrl 773 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺) |
14 | | usgrumgr 27452 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UMGraph) |
15 | 14 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ UMGraph) |
16 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ UMGraph) |
17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UMGraph) |
18 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆)) |
19 | 1, 3 | subumgredg2 27555 |
. . . . . . . . . 10
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) |
20 | 13, 17, 18, 19 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) |
21 | 20 | ralrimiva 3107 |
. . . . . . . 8
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) |
22 | | fnfvrnss 6976 |
. . . . . . . 8
⊢
(((iEdg‘𝑆) Fn
dom (iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) → ran
(iEdg‘𝑆) ⊆
{𝑒 ∈ 𝒫
(Vtx‘𝑆) ∣
(♯‘𝑒) =
2}) |
23 | 12, 21, 22 | syl2anc 583 |
. . . . . . 7
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → ran
(iEdg‘𝑆) ⊆
{𝑒 ∈ 𝒫
(Vtx‘𝑆) ∣
(♯‘𝑒) =
2}) |
24 | | df-f 6422 |
. . . . . . 7
⊢
((iEdg‘𝑆):dom
(iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})) |
25 | 12, 23, 24 | sylanbrc 582 |
. . . . . 6
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) |
26 | | simp2 1135 |
. . . . . . . . 9
⊢
(((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
→ (iEdg‘𝑆)
⊆ (iEdg‘𝐺)) |
27 | 2, 4 | usgrfs 27430 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2}) |
28 | | df-f1 6423 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ↔ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun ◡(iEdg‘𝐺))) |
29 | | ffun 6587 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → Fun
(iEdg‘𝐺)) |
30 | 29 | anim1i 614 |
. . . . . . . . . . . 12
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} ∧ Fun ◡(iEdg‘𝐺)) → (Fun (iEdg‘𝐺) ∧ Fun ◡(iEdg‘𝐺))) |
31 | 28, 30 | sylbi 216 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑦 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑦) = 2} → (Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺))) |
32 | 27, 31 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺))) |
33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → (Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺))) |
34 | 26, 33 | anim12ci 613 |
. . . . . . . 8
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → ((Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) |
35 | | df-3an 1087 |
. . . . . . . 8
⊢ ((Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) ↔ ((Fun (iEdg‘𝐺) ∧ Fun ◡(iEdg‘𝐺)) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) |
36 | 34, 35 | sylibr 233 |
. . . . . . 7
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → (Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺))) |
37 | | f1ssf1 6731 |
. . . . . . 7
⊢ ((Fun
(iEdg‘𝐺) ∧ Fun
◡(iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) → Fun ◡(iEdg‘𝑆)) |
38 | 36, 37 | syl 17 |
. . . . . 6
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → Fun ◡(iEdg‘𝑆)) |
39 | | df-f1 6423 |
. . . . . 6
⊢
((iEdg‘𝑆):dom
(iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2} ∧ Fun ◡(iEdg‘𝑆))) |
40 | 25, 38, 39 | sylanbrc 582 |
. . . . 5
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2}) |
41 | | subgrv 27540 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
42 | 1, 3 | isusgrs 27429 |
. . . . . . . . 9
⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔
(iEdg‘𝑆):dom
(iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})) |
43 | 42 | adantr 480 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ USGraph ↔
(iEdg‘𝑆):dom
(iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})) |
44 | 41, 43 | syl 17 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})) |
45 | 44 | adantr 480 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})) |
46 | 45 | adantl 481 |
. . . . 5
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → (𝑆 ∈ USGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝑆) ∣ (♯‘𝑒) = 2})) |
47 | 40, 46 | mpbird 256 |
. . . 4
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph)) → 𝑆 ∈ USGraph) |
48 | 47 | ex 412 |
. . 3
⊢
(((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
→ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → 𝑆 ∈ USGraph)) |
49 | 6, 48 | syl 17 |
. 2
⊢ (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph) → 𝑆 ∈ USGraph)) |
50 | 49 | anabsi8 668 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ USGraph) |