| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 2 | | eqid 2736 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 3 | | eqid 2736 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 4 | | eqid 2736 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 5 | | eqid 2736 |
. . . 4
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
| 6 | 1, 2, 3, 4, 5 | subgrprop2 29258 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 7 | | subgruhgrfun 29266 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
| 8 | 7 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph) → Fun
(iEdg‘𝑆)) |
| 9 | 8 | adantl 481 |
. . . . . . 7
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → Fun
(iEdg‘𝑆)) |
| 10 | 9 | funfnd 6572 |
. . . . . 6
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆)) |
| 11 | | simplrr 777 |
. . . . . . . . 9
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph) |
| 12 | | simplrl 776 |
. . . . . . . . 9
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆)) |
| 14 | 1, 3, 11, 12, 13 | subgruhgredgd 29268 |
. . . . . . . 8
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖
{∅})) |
| 15 | 14 | ralrimiva 3133 |
. . . . . . 7
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖
{∅})) |
| 16 | | fnfvrnss 7116 |
. . . . . . 7
⊢
(((iEdg‘𝑆) Fn
dom (iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})) → ran
(iEdg‘𝑆) ⊆
(𝒫 (Vtx‘𝑆)
∖ {∅})) |
| 17 | 10, 15, 16 | syl2anc 584 |
. . . . . 6
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → ran
(iEdg‘𝑆) ⊆
(𝒫 (Vtx‘𝑆)
∖ {∅})) |
| 18 | | df-f 6540 |
. . . . . 6
⊢
((iEdg‘𝑆):dom
(iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) ↔
((iEdg‘𝑆) Fn dom
(iEdg‘𝑆) ∧ ran
(iEdg‘𝑆) ⊆
(𝒫 (Vtx‘𝑆)
∖ {∅}))) |
| 19 | 10, 17, 18 | sylanbrc 583 |
. . . . 5
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫
(Vtx‘𝑆) ∖
{∅})) |
| 20 | | subgrv 29254 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| 21 | 1, 3 | isuhgr 29044 |
. . . . . . . . 9
⊢ (𝑆 ∈ V → (𝑆 ∈ UHGraph ↔
(iEdg‘𝑆):dom
(iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖
{∅}))) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UHGraph ↔
(iEdg‘𝑆):dom
(iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖
{∅}))) |
| 23 | 20, 22 | syl 17 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫
(Vtx‘𝑆) ∖
{∅}))) |
| 24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫
(Vtx‘𝑆) ∖
{∅}))) |
| 25 | 24 | adantl 481 |
. . . . 5
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫
(Vtx‘𝑆) ∖
{∅}))) |
| 26 | 19, 25 | mpbird 257 |
. . . 4
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) → 𝑆 ∈ UHGraph) |
| 27 | 26 | ex 412 |
. . 3
⊢
(((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
→ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph) → 𝑆 ∈ UHGraph)) |
| 28 | 6, 27 | syl 17 |
. 2
⊢ (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph) → 𝑆 ∈ UHGraph)) |
| 29 | 28 | anabsi8 672 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph) |