MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subuhgr Structured version   Visualization version   GIF version

Theorem subuhgr 27328
Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subuhgr ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph)

Proof of Theorem subuhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2736 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2736 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27316 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 subgruhgrfun 27324 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
87ancoms 462 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → Fun (iEdg‘𝑆))
98adantl 485 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → Fun (iEdg‘𝑆))
109funfnd 6389 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
11 simplrr 778 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph)
12 simplrl 777 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
13 simpr 488 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
141, 3, 11, 12, 13subgruhgredgd 27326 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
1514ralrimiva 3095 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
16 fnfvrnss 6915 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})) → ran (iEdg‘𝑆) ⊆ (𝒫 (Vtx‘𝑆) ∖ {∅}))
1710, 15, 16syl2anc 587 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → ran (iEdg‘𝑆) ⊆ (𝒫 (Vtx‘𝑆) ∖ {∅}))
18 df-f 6362 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ (𝒫 (Vtx‘𝑆) ∖ {∅})))
1910, 17, 18sylanbrc 586 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}))
20 subgrv 27312 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
211, 3isuhgr 27105 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2221adantr 484 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2320, 22syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2423adantr 484 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2524adantl 485 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2619, 25mpbird 260 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → 𝑆 ∈ UHGraph)
2726ex 416 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → 𝑆 ∈ UHGraph))
286, 27syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → 𝑆 ∈ UHGraph))
2928anabsi8 672 1 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2112  wral 3051  Vcvv 3398  cdif 3850  wss 3853  c0 4223  𝒫 cpw 4499  {csn 4527   class class class wbr 5039  dom cdm 5536  ran crn 5537  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  Vtxcvtx 27041  iEdgciedg 27042  Edgcedg 27092  UHGraphcuhgr 27101   SubGraph csubgr 27309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-edg 27093  df-uhgr 27103  df-subgr 27310
This theorem is referenced by:  uhgrspan  27334
  Copyright terms: Public domain W3C validator