MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subuhgr Structured version   Visualization version   GIF version

Theorem subuhgr 27556
Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subuhgr ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph)

Proof of Theorem subuhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2738 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27544 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 subgruhgrfun 27552 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
87ancoms 458 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → Fun (iEdg‘𝑆))
98adantl 481 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → Fun (iEdg‘𝑆))
109funfnd 6449 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
11 simplrr 774 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph)
12 simplrl 773 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
13 simpr 484 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
141, 3, 11, 12, 13subgruhgredgd 27554 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
1514ralrimiva 3107 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
16 fnfvrnss 6976 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})) → ran (iEdg‘𝑆) ⊆ (𝒫 (Vtx‘𝑆) ∖ {∅}))
1710, 15, 16syl2anc 583 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → ran (iEdg‘𝑆) ⊆ (𝒫 (Vtx‘𝑆) ∖ {∅}))
18 df-f 6422 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ (𝒫 (Vtx‘𝑆) ∖ {∅})))
1910, 17, 18sylanbrc 582 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}))
20 subgrv 27540 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
211, 3isuhgr 27333 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2221adantr 480 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2320, 22syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2423adantr 480 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2524adantl 481 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
2619, 25mpbird 256 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph)) → 𝑆 ∈ UHGraph)
2726ex 412 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → 𝑆 ∈ UHGraph))
286, 27syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UHGraph) → 𝑆 ∈ UHGraph))
2928anabsi8 668 1 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329   SubGraph csubgr 27537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-edg 27321  df-uhgr 27331  df-subgr 27538
This theorem is referenced by:  uhgrspan  27562
  Copyright terms: Public domain W3C validator