MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subupgr Structured version   Visualization version   GIF version

Theorem subupgr 29113
Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subupgr ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)

Proof of Theorem subupgr
Dummy variables 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2728 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2728 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2728 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2728 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 29100 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 upgruhgr 28928 . . . . . . . . . 10 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 29108 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 579 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 458 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → Fun (iEdg‘𝑆))
1110funfnd 6584 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1211adantl 481 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
13 fveq2 6897 . . . . . . . . . 10 (𝑒 = ((iEdg‘𝑆)‘𝑥) → (♯‘𝑒) = (♯‘((iEdg‘𝑆)‘𝑥)))
1413breq1d 5158 . . . . . . . . 9 (𝑒 = ((iEdg‘𝑆)‘𝑥) → ((♯‘𝑒) ≤ 2 ↔ (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2))
157anim2i 616 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1615adantl 481 . . . . . . . . . . . . 13 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1716ancomd 461 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺))
1817anim1i 614 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)))
1918simplld 767 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph)
20 simpl 482 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 SubGraph 𝐺)
2120adantl 481 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 SubGraph 𝐺)
2221adantr 480 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
23 simpr 484 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
241, 3, 19, 22, 23subgruhgredgd 29110 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
254uhgrfun 28892 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
267, 25syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
2726ad2antll 728 . . . . . . . . . . . . . 14 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → Fun (iEdg‘𝐺))
2827adantr 480 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → Fun (iEdg‘𝐺))
29 simpll2 1211 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
30 funssfv 6918 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3128, 29, 23, 30syl3anc 1369 . . . . . . . . . . . 12 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3231eqcomd 2734 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) = ((iEdg‘𝐺)‘𝑥))
3332fveq2d 6901 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) = (♯‘((iEdg‘𝐺)‘𝑥)))
34 subgreldmiedg 29109 . . . . . . . . . . . . . . 15 ((𝑆 SubGraph 𝐺𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝐺))
3534ex 412 . . . . . . . . . . . . . 14 (𝑆 SubGraph 𝐺 → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3635adantr 480 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3736adantl 481 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
38 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝐺 ∈ UPGraph)
3926funfnd 6584 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
4039adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
41 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝑥 ∈ dom (iEdg‘𝐺))
422, 4upgrle 28916 . . . . . . . . . . . . . . 15 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4338, 40, 41, 42syl3anc 1369 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4443expcom 413 . . . . . . . . . . . . 13 (𝐺 ∈ UPGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4544ad2antll 728 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4637, 45syld 47 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4746imp 406 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4833, 47eqbrtrd 5170 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2)
4914, 24, 48elrabd 3684 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5049ralrimiva 3143 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
51 fnfvrnss 7131 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5212, 50, 51syl2anc 583 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
53 df-f 6552 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5412, 52, 53sylanbrc 582 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
55 subgrv 29096 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
561, 3isupgr 28910 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5756adantr 480 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5855, 57syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5958adantr 480 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6059adantl 481 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6154, 60mpbird 257 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 ∈ UPGraph)
6261ex 412 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
636, 62syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
6463anabsi8 671 1 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  {crab 3429  Vcvv 3471  cdif 3944  wss 3947  c0 4323  𝒫 cpw 4603  {csn 4629   class class class wbr 5148  dom cdm 5678  ran crn 5679  Fun wfun 6542   Fn wfn 6543  wf 6544  cfv 6548  cle 11280  2c2 12298  chash 14322  Vtxcvtx 28822  iEdgciedg 28823  Edgcedg 28873  UHGraphcuhgr 28882  UPGraphcupgr 28906   SubGraph csubgr 29093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-edg 28874  df-uhgr 28884  df-upgr 28908  df-subgr 29094
This theorem is referenced by:  upgrspan  29119
  Copyright terms: Public domain W3C validator