Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
2 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
4 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
5 | | eqid 2738 |
. . . 4
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
6 | 1, 2, 3, 4, 5 | subgrprop2 27641 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | | upgruhgr 27472 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → 𝐺 ∈
UHGraph) |
8 | | subgruhgrfun 27649 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
9 | 7, 8 | sylan 580 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
10 | 9 | ancoms 459 |
. . . . . . . 8
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → Fun
(iEdg‘𝑆)) |
11 | 10 | funfnd 6465 |
. . . . . . 7
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆)) |
12 | 11 | adantl 482 |
. . . . . 6
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆)) |
13 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑒 = ((iEdg‘𝑆)‘𝑥) → (♯‘𝑒) = (♯‘((iEdg‘𝑆)‘𝑥))) |
14 | 13 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑒 = ((iEdg‘𝑆)‘𝑥) → ((♯‘𝑒) ≤ 2 ↔
(♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2)) |
15 | 7 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) |
16 | 15 | adantl 482 |
. . . . . . . . . . . . 13
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph)) |
17 | 16 | ancomd 462 |
. . . . . . . . . . . 12
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺)) |
18 | 17 | anim1i 615 |
. . . . . . . . . . 11
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆))) |
19 | 18 | simplld 765 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph) |
20 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → 𝑆 SubGraph 𝐺) |
21 | 20 | adantl 482 |
. . . . . . . . . . 11
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → 𝑆 SubGraph 𝐺) |
22 | 21 | adantr 481 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺) |
23 | | simpr 485 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆)) |
24 | 1, 3, 19, 22, 23 | subgruhgredgd 27651 |
. . . . . . . . 9
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖
{∅})) |
25 | 4 | uhgrfun 27436 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
26 | 7, 25 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ UPGraph → Fun
(iEdg‘𝐺)) |
27 | 26 | ad2antll 726 |
. . . . . . . . . . . . . 14
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → Fun
(iEdg‘𝐺)) |
28 | 27 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → Fun (iEdg‘𝐺)) |
29 | | simpll2 1212 |
. . . . . . . . . . . . 13
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) |
30 | | funssfv 6795 |
. . . . . . . . . . . . 13
⊢ ((Fun
(iEdg‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥)) |
31 | 28, 29, 23, 30 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥)) |
32 | 31 | eqcomd 2744 |
. . . . . . . . . . 11
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) = ((iEdg‘𝐺)‘𝑥)) |
33 | 32 | fveq2d 6778 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) = (♯‘((iEdg‘𝐺)‘𝑥))) |
34 | | subgreldmiedg 27650 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝐺)) |
35 | 34 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝑆 SubGraph 𝐺 → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺))) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺))) |
37 | 36 | adantl 482 |
. . . . . . . . . . . 12
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺))) |
38 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝐺 ∈ UPGraph) |
39 | 26 | funfnd 6465 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
40 | 39 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) |
41 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝑥 ∈ dom (iEdg‘𝐺)) |
42 | 2, 4 | upgrle 27460 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ UPGraph ∧
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) →
(♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2) |
43 | 38, 40, 41, 42 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) →
(♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2) |
44 | 43 | expcom 414 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ UPGraph → (𝑥 ∈ dom (iEdg‘𝐺) →
(♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)) |
45 | 44 | ad2antll 726 |
. . . . . . . . . . . 12
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)) |
46 | 37, 45 | syld 47 |
. . . . . . . . . . 11
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)) |
47 | 46 | imp 407 |
. . . . . . . . . 10
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2) |
48 | 33, 47 | eqbrtrd 5096 |
. . . . . . . . 9
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2) |
49 | 14, 24, 48 | elrabd 3626 |
. . . . . . . 8
⊢
(((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2}) |
50 | 49 | ralrimiva 3103 |
. . . . . . 7
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2}) |
51 | | fnfvrnss 6994 |
. . . . . . 7
⊢
(((iEdg‘𝑆) Fn
dom (iEdg‘𝑆) ∧
∀𝑥 ∈ dom
(iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤ 2})
→ ran (iEdg‘𝑆)
⊆ {𝑒 ∈
(𝒫 (Vtx‘𝑆)
∖ {∅}) ∣ (♯‘𝑒) ≤ 2}) |
52 | 12, 50, 51 | syl2anc 584 |
. . . . . 6
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → ran
(iEdg‘𝑆) ⊆
{𝑒 ∈ (𝒫
(Vtx‘𝑆) ∖
{∅}) ∣ (♯‘𝑒) ≤ 2}) |
53 | | df-f 6437 |
. . . . . 6
⊢
((iEdg‘𝑆):dom
(iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤ 2}
↔ ((iEdg‘𝑆) Fn
dom (iEdg‘𝑆) ∧
ran (iEdg‘𝑆) ⊆
{𝑒 ∈ (𝒫
(Vtx‘𝑆) ∖
{∅}) ∣ (♯‘𝑒) ≤ 2})) |
54 | 12, 52, 53 | sylanbrc 583 |
. . . . 5
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2}) |
55 | | subgrv 27637 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
56 | 1, 3 | isupgr 27454 |
. . . . . . . . 9
⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔
(iEdg‘𝑆):dom
(iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2})) |
57 | 56 | adantr 481 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UPGraph ↔
(iEdg‘𝑆):dom
(iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2})) |
58 | 55, 57 | syl 17 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2})) |
59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2})) |
60 | 59 | adantl 482 |
. . . . 5
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣
(♯‘𝑒) ≤
2})) |
61 | 54, 60 | mpbird 256 |
. . . 4
⊢
((((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
∧ (𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph)) → 𝑆 ∈ UPGraph) |
62 | 61 | ex 413 |
. . 3
⊢
(((Vtx‘𝑆)
⊆ (Vtx‘𝐺) ∧
(iEdg‘𝑆) ⊆
(iEdg‘𝐺) ∧
(Edg‘𝑆) ⊆
𝒫 (Vtx‘𝑆))
→ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph)) |
63 | 6, 62 | syl 17 |
. 2
⊢ (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph)) |
64 | 63 | anabsi8 669 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph) |