Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subupgr Structured version   Visualization version   GIF version

Theorem subupgr 27061
 Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subupgr ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)

Proof of Theorem subupgr
Dummy variables 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2819 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2819 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2819 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2819 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27048 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 upgruhgr 26879 . . . . . . . . . 10 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 27056 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 582 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 461 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → Fun (iEdg‘𝑆))
1110funfnd 6379 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1211adantl 484 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
13 fveq2 6663 . . . . . . . . . 10 (𝑒 = ((iEdg‘𝑆)‘𝑥) → (♯‘𝑒) = (♯‘((iEdg‘𝑆)‘𝑥)))
1413breq1d 5067 . . . . . . . . 9 (𝑒 = ((iEdg‘𝑆)‘𝑥) → ((♯‘𝑒) ≤ 2 ↔ (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2))
157anim2i 618 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1615adantl 484 . . . . . . . . . . . . 13 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1716ancomd 464 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺))
1817anim1i 616 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)))
1918simplld 766 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph)
20 simpl 485 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 SubGraph 𝐺)
2120adantl 484 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 SubGraph 𝐺)
2221adantr 483 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
23 simpr 487 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
241, 3, 19, 22, 23subgruhgredgd 27058 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
254uhgrfun 26843 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
267, 25syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
2726ad2antll 727 . . . . . . . . . . . . . 14 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → Fun (iEdg‘𝐺))
2827adantr 483 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → Fun (iEdg‘𝐺))
29 simpll2 1207 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
30 funssfv 6684 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3128, 29, 23, 30syl3anc 1365 . . . . . . . . . . . 12 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3231eqcomd 2825 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) = ((iEdg‘𝐺)‘𝑥))
3332fveq2d 6667 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) = (♯‘((iEdg‘𝐺)‘𝑥)))
34 subgreldmiedg 27057 . . . . . . . . . . . . . . 15 ((𝑆 SubGraph 𝐺𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝐺))
3534ex 415 . . . . . . . . . . . . . 14 (𝑆 SubGraph 𝐺 → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3635adantr 483 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3736adantl 484 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
38 simpr 487 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝐺 ∈ UPGraph)
3926funfnd 6379 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
4039adantl 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
41 simpl 485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝑥 ∈ dom (iEdg‘𝐺))
422, 4upgrle 26867 . . . . . . . . . . . . . . 15 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4338, 40, 41, 42syl3anc 1365 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4443expcom 416 . . . . . . . . . . . . 13 (𝐺 ∈ UPGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4544ad2antll 727 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4637, 45syld 47 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4746imp 409 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4833, 47eqbrtrd 5079 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2)
4914, 24, 48elrabd 3680 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5049ralrimiva 3180 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
51 fnfvrnss 6877 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5212, 50, 51syl2anc 586 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
53 df-f 6352 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5412, 52, 53sylanbrc 585 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
55 subgrv 27044 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
561, 3isupgr 26861 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5756adantr 483 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5855, 57syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5958adantr 483 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6059adantl 484 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6154, 60mpbird 259 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 ∈ UPGraph)
6261ex 415 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
636, 62syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
6463anabsi8 670 1 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3136  {crab 3140  Vcvv 3493   ∖ cdif 3931   ⊆ wss 3934  ∅c0 4289  𝒫 cpw 4537  {csn 4559   class class class wbr 5057  dom cdm 5548  ran crn 5549  Fun wfun 6342   Fn wfn 6343  ⟶wf 6344  ‘cfv 6348   ≤ cle 10668  2c2 11684  ♯chash 13682  Vtxcvtx 26773  iEdgciedg 26774  Edgcedg 26824  UHGraphcuhgr 26833  UPGraphcupgr 26857   SubGraph csubgr 27041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-edg 26825  df-uhgr 26835  df-upgr 26859  df-subgr 27042 This theorem is referenced by:  upgrspan  27067
 Copyright terms: Public domain W3C validator