MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subupgr Structured version   Visualization version   GIF version

Theorem subupgr 26591
Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subupgr ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)

Proof of Theorem subupgr
Dummy variables 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2825 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2825 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2825 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2825 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 26578 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 upgruhgr 26407 . . . . . . . . . 10 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 26586 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 575 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 452 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → Fun (iEdg‘𝑆))
11 funfn 6157 . . . . . . . 8 (Fun (iEdg‘𝑆) ↔ (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1210, 11sylib 210 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1312adantl 475 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
147anim2i 610 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1514adantl 475 . . . . . . . . . . . . 13 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1615ancomd 455 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺))
1716anim1i 608 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)))
1817simplld 784 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph)
19 simpl 476 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 SubGraph 𝐺)
2019adantl 475 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 SubGraph 𝐺)
2120adantr 474 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
22 simpr 479 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
231, 3, 18, 21, 22subgruhgredgd 26588 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
244uhgrfun 26371 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
257, 24syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
2625ad2antll 720 . . . . . . . . . . . . . 14 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → Fun (iEdg‘𝐺))
2726adantr 474 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → Fun (iEdg‘𝐺))
28 simpll2 1275 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
29 funssfv 6458 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3027, 28, 22, 29syl3anc 1494 . . . . . . . . . . . 12 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3130eqcomd 2831 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) = ((iEdg‘𝐺)‘𝑥))
3231fveq2d 6441 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) = (♯‘((iEdg‘𝐺)‘𝑥)))
33 subgreldmiedg 26587 . . . . . . . . . . . . . . 15 ((𝑆 SubGraph 𝐺𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝐺))
3433ex 403 . . . . . . . . . . . . . 14 (𝑆 SubGraph 𝐺 → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3534adantr 474 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3635adantl 475 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
37 simpr 479 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝐺 ∈ UPGraph)
38 funfn 6157 . . . . . . . . . . . . . . . . 17 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
3925, 38sylib 210 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
4039adantl 475 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
41 simpl 476 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝑥 ∈ dom (iEdg‘𝐺))
422, 4upgrle 26395 . . . . . . . . . . . . . . 15 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4337, 40, 41, 42syl3anc 1494 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4443expcom 404 . . . . . . . . . . . . 13 (𝐺 ∈ UPGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4544ad2antll 720 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4636, 45syld 47 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4746imp 397 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4832, 47eqbrtrd 4897 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2)
49 fveq2 6437 . . . . . . . . . . 11 (𝑒 = ((iEdg‘𝑆)‘𝑥) → (♯‘𝑒) = (♯‘((iEdg‘𝑆)‘𝑥)))
5049breq1d 4885 . . . . . . . . . 10 (𝑒 = ((iEdg‘𝑆)‘𝑥) → ((♯‘𝑒) ≤ 2 ↔ (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2))
5150elrab 3585 . . . . . . . . 9 (((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2} ↔ (((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∧ (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2))
5223, 48, 51sylanbrc 578 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5352ralrimiva 3175 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
54 fnfvrnss 6644 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5513, 53, 54syl2anc 579 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
56 df-f 6131 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5713, 55, 56sylanbrc 578 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
58 subgrv 26574 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
591, 3isupgr 26389 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6059adantr 474 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6158, 60syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6261adantr 474 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6362adantl 475 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6457, 63mpbird 249 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 ∈ UPGraph)
6564ex 403 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
666, 65syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
6766anabsi8 662 1 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  {crab 3121  Vcvv 3414  cdif 3795  wss 3798  c0 4146  𝒫 cpw 4380  {csn 4399   class class class wbr 4875  dom cdm 5346  ran crn 5347  Fun wfun 6121   Fn wfn 6122  wf 6123  cfv 6127  cle 10399  2c2 11413  chash 13417  Vtxcvtx 26301  iEdgciedg 26302  Edgcedg 26352  UHGraphcuhgr 26361  UPGraphcupgr 26385   SubGraph csubgr 26571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-edg 26353  df-uhgr 26363  df-upgr 26387  df-subgr 26572
This theorem is referenced by:  upgrspan  26597
  Copyright terms: Public domain W3C validator