Proof of Theorem lcmcllem
Step | Hyp | Ref
| Expression |
1 | | lcmn0val 16228 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
2 | | ssrab2 4009 |
. . . 4
⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ ℕ |
3 | | nnuz 12550 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
4 | 2, 3 | sseqtri 3953 |
. . 3
⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆
(ℤ≥‘1) |
5 | | zmulcl 12299 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
6 | 5 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ) |
7 | | zcn 12254 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
8 | | zcn 12254 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
9 | 7, 8 | anim12i 612 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈
ℂ)) |
10 | | ioran 980 |
. . . . . . . 8
⊢ (¬
(𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
11 | | df-ne 2943 |
. . . . . . . . 9
⊢ (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0) |
12 | | df-ne 2943 |
. . . . . . . . 9
⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) |
13 | 11, 12 | anbi12i 626 |
. . . . . . . 8
⊢ ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
14 | 10, 13 | sylbb2 237 |
. . . . . . 7
⊢ (¬
(𝑀 = 0 ∨ 𝑁 = 0) → (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) |
15 | | mulne0 11547 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
16 | 15 | an4s 656 |
. . . . . . 7
⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
17 | 9, 14, 16 | syl2an 595 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ≠ 0) |
18 | | nnabscl 14965 |
. . . . . 6
⊢ (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ) |
19 | 6, 17, 18 | syl2anc 583 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ) |
20 | | dvdsmul1 15915 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
21 | | dvdsabsb 15913 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
22 | 5, 21 | syldan 590 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
23 | 20, 22 | mpbid 231 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘(𝑀 · 𝑁))) |
24 | | dvdsmul2 15916 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
25 | | dvdsabsb 15913 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
26 | 5, 25 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
27 | 26 | anabss7 669 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
28 | 24, 27 | mpbid 231 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (abs‘(𝑀 · 𝑁))) |
29 | 23, 28 | jca 511 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
30 | 29 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
31 | | breq2 5074 |
. . . . . . 7
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
32 | | breq2 5074 |
. . . . . . 7
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
33 | 31, 32 | anbi12d 630 |
. . . . . 6
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))) |
34 | 33 | rspcev 3552 |
. . . . 5
⊢
(((abs‘(𝑀
· 𝑁)) ∈ ℕ
∧ (𝑀 ∥
(abs‘(𝑀 ·
𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) → ∃𝑛 ∈ ℕ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
35 | 19, 30, 34 | syl2anc 583 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ∃𝑛 ∈ ℕ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
36 | | rabn0 4316 |
. . . 4
⊢ ({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
37 | 35, 36 | sylibr 233 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ≠ ∅) |
38 | | infssuzcl 12601 |
. . 3
⊢ (({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ⊆ (ℤ≥‘1)
∧ {𝑛 ∈ ℕ
∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
39 | 4, 37, 38 | sylancr 586 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
40 | 1, 39 | eqeltrd 2839 |
1
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |