MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Visualization version   GIF version

Theorem faclbnd5 14270
Description: The factorial function grows faster than powers and exponentiations. If we consider 𝐾 and 𝑀 to be constants, the right-hand side of the inequality is a constant times 𝑁-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 12458 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 reexpcl 14050 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
31, 2sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
43ancoms 458 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
5 nnre 12200 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 reexpcl 14050 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
75, 6sylan 580 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
8 remulcl 11160 . . . . . . 7 (((𝑁𝐾) ∈ ℝ ∧ (𝑀𝑁) ∈ ℝ) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
94, 7, 8syl2an 596 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
109anandirs 679 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
11 2nn 12266 . . . . . . . . 9 2 ∈ ℕ
12 nn0sqcl 14061 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
13 nnexpcl 14046 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ)
1411, 12, 13sylancr 587 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ)
15 nnnn0 12456 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
16 nn0addcl 12484 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1716ancoms 458 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1815, 17sylan2 593 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀 + 𝐾) ∈ ℕ0)
19 nnexpcl 14046 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2018, 19sylan2 593 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ)) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2120anabss7 673 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
22 nnmulcl 12217 . . . . . . . 8 (((2↑(𝐾↑2)) ∈ ℕ ∧ (𝑀↑(𝑀 + 𝐾)) ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2314, 21, 22syl2an2r 685 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2423nnred 12208 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ)
25 faccl 14255 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 12208 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
27 remulcl 11160 . . . . . 6 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
2824, 26, 27syl2an 596 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
29 2re 12267 . . . . . 6 2 ∈ ℝ
30 remulcl 11160 . . . . . 6 ((2 ∈ ℝ ∧ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
3129, 28, 30sylancr 587 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
32 faclbnd4 14269 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
3315, 32syl3an3 1165 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
34333coml 1127 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
35343expa 1118 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
36 1lt2 12359 . . . . . 6 1 < 2
37 nnmulcl 12217 . . . . . . . . 9 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3823, 25, 37syl2an 596 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3938nngt0d 12242 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
40 ltmulgt12 12050 . . . . . . . 8 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4129, 40mp3an2 1451 . . . . . . 7 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4228, 39, 41syl2anc 584 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4336, 42mpbii 233 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4410, 28, 31, 35, 43lelttrd 11339 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
45 2cn 12268 . . . . 5 2 ∈ ℂ
4623nncnd 12209 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
4725nncnd 12209 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
48 mulass 11163 . . . . 5 ((2 ∈ ℂ ∧ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ ∧ (!‘𝑁) ∈ ℂ) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4945, 46, 47, 48mp3an3an 1469 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5044, 49breqtrrd 5138 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
51503impa 1109 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
52513comr 1125 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cn 12193  2c2 12248  0cn0 12449  cexp 14033  !cfa 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-fac 14246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator