MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Visualization version   GIF version

Theorem faclbnd5 14105
Description: The factorial function grows faster than powers and exponentiations. If we consider 𝐾 and 𝑀 to be constants, the right-hand side of the inequality is a constant times 𝑁-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 12335 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 reexpcl 13892 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
31, 2sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
43ancoms 459 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
5 nnre 12073 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 reexpcl 13892 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
75, 6sylan 580 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
8 remulcl 11049 . . . . . . 7 (((𝑁𝐾) ∈ ℝ ∧ (𝑀𝑁) ∈ ℝ) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
94, 7, 8syl2an 596 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
109anandirs 676 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
11 2nn 12139 . . . . . . . . 9 2 ∈ ℕ
12 nn0sqcl 13903 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
13 nnexpcl 13888 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ)
1411, 12, 13sylancr 587 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ)
15 nnnn0 12333 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
16 nn0addcl 12361 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1716ancoms 459 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1815, 17sylan2 593 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀 + 𝐾) ∈ ℕ0)
19 nnexpcl 13888 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2018, 19sylan2 593 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ)) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2120anabss7 670 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
22 nnmulcl 12090 . . . . . . . 8 (((2↑(𝐾↑2)) ∈ ℕ ∧ (𝑀↑(𝑀 + 𝐾)) ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2314, 21, 22syl2an2r 682 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2423nnred 12081 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ)
25 faccl 14090 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 12081 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
27 remulcl 11049 . . . . . 6 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
2824, 26, 27syl2an 596 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
29 2re 12140 . . . . . 6 2 ∈ ℝ
30 remulcl 11049 . . . . . 6 ((2 ∈ ℝ ∧ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
3129, 28, 30sylancr 587 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
32 faclbnd4 14104 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
3315, 32syl3an3 1164 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
34333coml 1126 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
35343expa 1117 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
36 1lt2 12237 . . . . . 6 1 < 2
37 nnmulcl 12090 . . . . . . . . 9 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3823, 25, 37syl2an 596 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3938nngt0d 12115 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
40 ltmulgt12 11929 . . . . . . . 8 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4129, 40mp3an2 1448 . . . . . . 7 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4228, 39, 41syl2anc 584 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4336, 42mpbii 232 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4410, 28, 31, 35, 43lelttrd 11226 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
45 2cn 12141 . . . . 5 2 ∈ ℂ
4623nncnd 12082 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
4725nncnd 12082 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
48 mulass 11052 . . . . 5 ((2 ∈ ℂ ∧ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ ∧ (!‘𝑁) ∈ ℂ) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4945, 46, 47, 48mp3an3an 1466 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5044, 49breqtrrd 5117 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
51503impa 1109 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
52513comr 1124 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5089  cfv 6473  (class class class)co 7329  cc 10962  cr 10963  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969   < clt 11102  cle 11103  cn 12066  2c2 12121  0cn0 12326  cexp 13875  !cfa 14080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-seq 13815  df-exp 13876  df-fac 14081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator