MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Visualization version   GIF version

Theorem faclbnd5 13940
Description: The factorial function grows faster than powers and exponentiations. If we consider 𝐾 and 𝑀 to be constants, the right-hand side of the inequality is a constant times 𝑁-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 12172 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 reexpcl 13727 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
31, 2sylan 579 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
43ancoms 458 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
5 nnre 11910 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 reexpcl 13727 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
75, 6sylan 579 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
8 remulcl 10887 . . . . . . 7 (((𝑁𝐾) ∈ ℝ ∧ (𝑀𝑁) ∈ ℝ) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
94, 7, 8syl2an 595 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
109anandirs 675 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
11 2nn 11976 . . . . . . . . 9 2 ∈ ℕ
12 nn0sqcl 13738 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
13 nnexpcl 13723 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ)
1411, 12, 13sylancr 586 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ)
15 nnnn0 12170 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
16 nn0addcl 12198 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1716ancoms 458 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1815, 17sylan2 592 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀 + 𝐾) ∈ ℕ0)
19 nnexpcl 13723 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2018, 19sylan2 592 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ)) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2120anabss7 669 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
22 nnmulcl 11927 . . . . . . . 8 (((2↑(𝐾↑2)) ∈ ℕ ∧ (𝑀↑(𝑀 + 𝐾)) ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2314, 21, 22syl2an2r 681 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2423nnred 11918 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ)
25 faccl 13925 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 11918 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
27 remulcl 10887 . . . . . 6 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
2824, 26, 27syl2an 595 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
29 2re 11977 . . . . . 6 2 ∈ ℝ
30 remulcl 10887 . . . . . 6 ((2 ∈ ℝ ∧ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
3129, 28, 30sylancr 586 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
32 faclbnd4 13939 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
3315, 32syl3an3 1163 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
34333coml 1125 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
35343expa 1116 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
36 1lt2 12074 . . . . . 6 1 < 2
37 nnmulcl 11927 . . . . . . . . 9 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3823, 25, 37syl2an 595 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3938nngt0d 11952 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
40 ltmulgt12 11766 . . . . . . . 8 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4129, 40mp3an2 1447 . . . . . . 7 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4228, 39, 41syl2anc 583 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4336, 42mpbii 232 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4410, 28, 31, 35, 43lelttrd 11063 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
45 2cn 11978 . . . . 5 2 ∈ ℂ
4623nncnd 11919 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
4725nncnd 11919 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
48 mulass 10890 . . . . 5 ((2 ∈ ℂ ∧ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ ∧ (!‘𝑁) ∈ ℂ) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4945, 46, 47, 48mp3an3an 1465 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5044, 49breqtrrd 5098 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
51503impa 1108 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
52513comr 1123 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cn 11903  2c2 11958  0cn0 12163  cexp 13710  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-fac 13916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator