MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd5 Structured version   Visualization version   GIF version

Theorem faclbnd5 14315
Description: The factorial function grows faster than powers and exponentiations. If we consider 𝐾 and 𝑀 to be constants, the right-hand side of the inequality is a constant times 𝑁-factorial. (Contributed by NM, 24-Dec-2005.)
Assertion
Ref Expression
faclbnd5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))

Proof of Theorem faclbnd5
StepHypRef Expression
1 nn0re 12533 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 reexpcl 14098 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
31, 2sylan 578 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
43ancoms 457 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℝ)
5 nnre 12271 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 reexpcl 14098 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
75, 6sylan 578 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
8 remulcl 11243 . . . . . . 7 (((𝑁𝐾) ∈ ℝ ∧ (𝑀𝑁) ∈ ℝ) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
94, 7, 8syl2an 594 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
109anandirs 677 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ∈ ℝ)
11 2nn 12337 . . . . . . . . 9 2 ∈ ℕ
12 nn0sqcl 14109 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
13 nnexpcl 14094 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ)
1411, 12, 13sylancr 585 . . . . . . . 8 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ)
15 nnnn0 12531 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
16 nn0addcl 12559 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1716ancoms 457 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
1815, 17sylan2 591 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀 + 𝐾) ∈ ℕ0)
19 nnexpcl 14094 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2018, 19sylan2 591 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ)) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
2120anabss7 671 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ)
22 nnmulcl 12288 . . . . . . . 8 (((2↑(𝐾↑2)) ∈ ℕ ∧ (𝑀↑(𝑀 + 𝐾)) ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2314, 21, 22syl2an2r 683 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ)
2423nnred 12279 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ)
25 faccl 14300 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 12279 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
27 remulcl 11243 . . . . . 6 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
2824, 26, 27syl2an 594 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ)
29 2re 12338 . . . . . 6 2 ∈ ℝ
30 remulcl 11243 . . . . . 6 ((2 ∈ ℝ ∧ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
3129, 28, 30sylancr 585 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) ∈ ℝ)
32 faclbnd4 14314 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
3315, 32syl3an3 1162 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
34333coml 1124 . . . . . 6 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
35343expa 1115 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
36 1lt2 12435 . . . . . 6 1 < 2
37 nnmulcl 12288 . . . . . . . . 9 ((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3823, 25, 37syl2an 594 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℕ)
3938nngt0d 12313 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
40 ltmulgt12 12126 . . . . . . . 8 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4129, 40mp3an2 1446 . . . . . . 7 (((((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ∈ ℝ ∧ 0 < (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4228, 39, 41syl2anc 582 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 < 2 ↔ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))))
4336, 42mpbii 232 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4410, 28, 31, 35, 43lelttrd 11422 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
45 2cn 12339 . . . . 5 2 ∈ ℂ
4623nncnd 12280 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
4725nncnd 12280 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
48 mulass 11246 . . . . 5 ((2 ∈ ℂ ∧ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ ∧ (!‘𝑁) ∈ ℂ) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
4945, 46, 47, 48mp3an3an 1464 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)) = (2 · (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
5044, 49breqtrrd 5181 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
51503impa 1107 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
52513comr 1122 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁𝐾) · (𝑀𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cn 12264  2c2 12319  0cn0 12524  cexp 14081  !cfa 14290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-fac 14291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator