| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funbrfv | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| funbrfv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6517 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | brrelex2 5685 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
| 4 | breq2 5106 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
| 5 | 4 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑦) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
| 6 | eqeq2 2741 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) = 𝑦 ↔ (𝐹‘𝐴) = 𝐵)) | |
| 7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵))) |
| 8 | funeu 6525 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦) | |
| 9 | tz6.12-1 6863 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝐴𝐹𝑦 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑦)) → (𝐹‘𝐴) = 𝑦) |
| 11 | 10 | anabss7 673 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
| 12 | 7, 11 | vtoclg 3517 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵)) |
| 13 | 3, 12 | mpcom 38 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵) |
| 14 | 13 | ex 412 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 Vcvv 3444 class class class wbr 5102 Rel wrel 5636 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 |
| This theorem is referenced by: funopfv 6892 fnbrfvb 6893 fvelima2 6895 fvelima 6908 fvelimad 6910 fvi 6919 opabiota 6925 fmptco 7083 fliftfun 7269 fliftval 7273 tfrlem5 8325 fpwwe2 10572 nqerid 10862 sum0 15663 sumz 15664 fsumsers 15670 isumclim 15699 ntrivcvgfvn0 15841 ntrivcvgtail 15842 zprodn0 15881 iprodclim 15940 idinv 17727 cnextfvval 23928 cnextfres 23932 dvadd 25819 dvmul 25820 dvco 25827 dvcj 25830 dvrec 25835 dvcnv 25857 dvef 25860 ftc1cn 25926 ulmdv 26288 minvecolem4b 30780 minvecolem4 30782 hlimuni 31140 chscllem4 31542 fmptcof2 32554 fvtransport 35993 fvray 36102 fvline 36105 ftc1cnnc 37659 iscard4 43495 frege124d 43723 |
| Copyright terms: Public domain | W3C validator |