Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funbrfv | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
funbrfv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6451 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | brrelex2 5641 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
4 | breq2 5078 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
5 | 4 | anbi2d 629 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑦) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | eqeq2 2750 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) = 𝑦 ↔ (𝐹‘𝐴) = 𝐵)) | |
7 | 5, 6 | imbi12d 345 | . . . 4 ⊢ (𝑦 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵))) |
8 | funeu 6459 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦) | |
9 | tz6.12-1 6796 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝐴𝐹𝑦 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑦)) → (𝐹‘𝐴) = 𝑦) |
11 | 10 | anabss7 670 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
12 | 7, 11 | vtoclg 3505 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵)) |
13 | 3, 12 | mpcom 38 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵) |
14 | 13 | ex 413 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 class class class wbr 5074 Rel wrel 5594 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: funopfv 6821 fnbrfvb 6822 fvelima 6835 fvelimad 6836 fvi 6844 opabiota 6851 fmptco 7001 fliftfun 7183 fliftval 7187 tfrlem5 8211 fpwwe2 10399 nqerid 10689 sum0 15433 sumz 15434 fsumsers 15440 isumclim 15469 ntrivcvgfvn0 15611 ntrivcvgtail 15612 zprodn0 15649 iprodclim 15708 idinv 17501 cnextfvval 23216 cnextfres 23220 dvadd 25104 dvmul 25105 dvco 25111 dvcj 25114 dvrec 25119 dvcnv 25141 dvef 25144 ftc1cn 25207 ulmdv 25562 minvecolem4b 29240 minvecolem4 29242 hlimuni 29600 chscllem4 30002 fmptcof2 30994 fvtransport 34334 fvray 34443 fvline 34446 ftc1cnnc 35849 iscard4 41140 frege124d 41369 fvelima2 42806 |
Copyright terms: Public domain | W3C validator |