MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfv Structured version   Visualization version   GIF version

Theorem funbrfv 6820
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))

Proof of Theorem funbrfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funrel 6451 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 brrelex2 5641 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
4 breq2 5078 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐹𝑦𝐴𝐹𝐵))
54anbi2d 629 . . . . 5 (𝑦 = 𝐵 → ((Fun 𝐹𝐴𝐹𝑦) ↔ (Fun 𝐹𝐴𝐹𝐵)))
6 eqeq2 2750 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝐴) = 𝑦 ↔ (𝐹𝐴) = 𝐵))
75, 6imbi12d 345 . . . 4 (𝑦 = 𝐵 → (((Fun 𝐹𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦) ↔ ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵)))
8 funeu 6459 . . . . . 6 ((Fun 𝐹𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦)
9 tz6.12-1 6796 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
108, 9sylan2 593 . . . . 5 ((𝐴𝐹𝑦 ∧ (Fun 𝐹𝐴𝐹𝑦)) → (𝐹𝐴) = 𝑦)
1110anabss7 670 . . . 4 ((Fun 𝐹𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
127, 11vtoclg 3505 . . 3 (𝐵 ∈ V → ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵))
133, 12mpcom 38 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵)
1413ex 413 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ∃!weu 2568  Vcvv 3432   class class class wbr 5074  Rel wrel 5594  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  funopfv  6821  fnbrfvb  6822  fvelima  6835  fvelimad  6836  fvi  6844  opabiota  6851  fmptco  7001  fliftfun  7183  fliftval  7187  tfrlem5  8211  fpwwe2  10399  nqerid  10689  sum0  15433  sumz  15434  fsumsers  15440  isumclim  15469  ntrivcvgfvn0  15611  ntrivcvgtail  15612  zprodn0  15649  iprodclim  15708  idinv  17501  cnextfvval  23216  cnextfres  23220  dvadd  25104  dvmul  25105  dvco  25111  dvcj  25114  dvrec  25119  dvcnv  25141  dvef  25144  ftc1cn  25207  ulmdv  25562  minvecolem4b  29240  minvecolem4  29242  hlimuni  29600  chscllem4  30002  fmptcof2  30994  fvtransport  34334  fvray  34443  fvline  34446  ftc1cnnc  35849  iscard4  41140  frege124d  41369  fvelima2  42806
  Copyright terms: Public domain W3C validator