| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funbrfv | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| funbrfv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6533 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | brrelex2 5692 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
| 4 | breq2 5111 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
| 5 | 4 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑦) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
| 6 | eqeq2 2741 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) = 𝑦 ↔ (𝐹‘𝐴) = 𝐵)) | |
| 7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵))) |
| 8 | funeu 6541 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦) | |
| 9 | tz6.12-1 6881 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝐴𝐹𝑦 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑦)) → (𝐹‘𝐴) = 𝑦) |
| 11 | 10 | anabss7 673 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
| 12 | 7, 11 | vtoclg 3520 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵)) |
| 13 | 3, 12 | mpcom 38 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵) |
| 14 | 13 | ex 412 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 Vcvv 3447 class class class wbr 5107 Rel wrel 5643 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: funopfv 6910 fnbrfvb 6911 fvelima2 6913 fvelima 6926 fvelimad 6928 fvi 6937 opabiota 6943 fmptco 7101 fliftfun 7287 fliftval 7291 tfrlem5 8348 fpwwe2 10596 nqerid 10886 sum0 15687 sumz 15688 fsumsers 15694 isumclim 15723 ntrivcvgfvn0 15865 ntrivcvgtail 15866 zprodn0 15905 iprodclim 15964 idinv 17751 cnextfvval 23952 cnextfres 23956 dvadd 25843 dvmul 25844 dvco 25851 dvcj 25854 dvrec 25859 dvcnv 25881 dvef 25884 ftc1cn 25950 ulmdv 26312 minvecolem4b 30807 minvecolem4 30809 hlimuni 31167 chscllem4 31569 fmptcof2 32581 fvtransport 36020 fvray 36129 fvline 36132 ftc1cnnc 37686 iscard4 43522 frege124d 43750 |
| Copyright terms: Public domain | W3C validator |