MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfv Structured version   Visualization version   GIF version

Theorem funbrfv 6957
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))

Proof of Theorem funbrfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funrel 6584 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 brrelex2 5742 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
4 breq2 5151 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐹𝑦𝐴𝐹𝐵))
54anbi2d 630 . . . . 5 (𝑦 = 𝐵 → ((Fun 𝐹𝐴𝐹𝑦) ↔ (Fun 𝐹𝐴𝐹𝐵)))
6 eqeq2 2746 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝐴) = 𝑦 ↔ (𝐹𝐴) = 𝐵))
75, 6imbi12d 344 . . . 4 (𝑦 = 𝐵 → (((Fun 𝐹𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦) ↔ ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵)))
8 funeu 6592 . . . . . 6 ((Fun 𝐹𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦)
9 tz6.12-1 6929 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
108, 9sylan2 593 . . . . 5 ((𝐴𝐹𝑦 ∧ (Fun 𝐹𝐴𝐹𝑦)) → (𝐹𝐴) = 𝑦)
1110anabss7 673 . . . 4 ((Fun 𝐹𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
127, 11vtoclg 3553 . . 3 (𝐵 ∈ V → ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵))
133, 12mpcom 38 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵)
1413ex 412 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  ∃!weu 2565  Vcvv 3477   class class class wbr 5147  Rel wrel 5693  Fun wfun 6556  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570
This theorem is referenced by:  funopfv  6958  fnbrfvb  6959  fvelima  6973  fvelimad  6975  fvi  6984  opabiota  6990  fmptco  7148  fliftfun  7331  fliftval  7335  tfrlem5  8418  fpwwe2  10680  nqerid  10970  sum0  15753  sumz  15754  fsumsers  15760  isumclim  15789  ntrivcvgfvn0  15931  ntrivcvgtail  15932  zprodn0  15971  iprodclim  16030  idinv  17836  cnextfvval  24088  cnextfres  24092  dvadd  25991  dvmul  25992  dvco  25999  dvcj  26002  dvrec  26007  dvcnv  26029  dvef  26032  ftc1cn  26098  ulmdv  26460  minvecolem4b  30906  minvecolem4  30908  hlimuni  31266  chscllem4  31668  fmptcof2  32673  fvtransport  36013  fvray  36122  fvline  36125  ftc1cnnc  37678  iscard4  43522  frege124d  43750  fvelima2  45204
  Copyright terms: Public domain W3C validator