Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv2 Structured version   Visualization version   GIF version

Theorem funbrafv2 44739
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6820. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
funbrafv2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))

Proof of Theorem funbrafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funrel 6451 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 brrelex2 5641 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
4 breq2 5078 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝐹𝑥𝐴𝐹𝐵))
54anbi2d 629 . . . . 5 (𝑥 = 𝐵 → ((Fun 𝐹𝐴𝐹𝑥) ↔ (Fun 𝐹𝐴𝐹𝐵)))
6 eqeq2 2750 . . . . 5 (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵))
75, 6imbi12d 345 . . . 4 (𝑥 = 𝐵 → (((Fun 𝐹𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)))
8 funeu 6459 . . . . . 6 ((Fun 𝐹𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
9 tz6.12-1-afv2 44733 . . . . . 6 ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
108, 9sylan2 593 . . . . 5 ((𝐴𝐹𝑥 ∧ (Fun 𝐹𝐴𝐹𝑥)) → (𝐹''''𝐴) = 𝑥)
1110anabss7 670 . . . 4 ((Fun 𝐹𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
127, 11vtoclg 3505 . . 3 (𝐵 ∈ V → ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))
133, 12mpcom 38 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)
1413ex 413 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ∃!weu 2568  Vcvv 3432   class class class wbr 5074  Rel wrel 5594  Fun wfun 6427  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-dfat 44611  df-afv2 44701
This theorem is referenced by:  fnbrafv2b  44740
  Copyright terms: Public domain W3C validator