Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv2 Structured version   Visualization version   GIF version

Theorem funbrafv2 47217
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6937. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
funbrafv2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))

Proof of Theorem funbrafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funrel 6563 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 brrelex2 5719 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
31, 2sylan 580 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
4 breq2 5127 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝐹𝑥𝐴𝐹𝐵))
54anbi2d 630 . . . . 5 (𝑥 = 𝐵 → ((Fun 𝐹𝐴𝐹𝑥) ↔ (Fun 𝐹𝐴𝐹𝐵)))
6 eqeq2 2746 . . . . 5 (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵))
75, 6imbi12d 344 . . . 4 (𝑥 = 𝐵 → (((Fun 𝐹𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)))
8 funeu 6571 . . . . . 6 ((Fun 𝐹𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
9 tz6.12-1-afv2 47211 . . . . . 6 ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
108, 9sylan2 593 . . . . 5 ((𝐴𝐹𝑥 ∧ (Fun 𝐹𝐴𝐹𝑥)) → (𝐹''''𝐴) = 𝑥)
1110anabss7 673 . . . 4 ((Fun 𝐹𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
127, 11vtoclg 3537 . . 3 (𝐵 ∈ V → ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))
133, 12mpcom 38 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)
1413ex 412 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ∃!weu 2566  Vcvv 3463   class class class wbr 5123  Rel wrel 5670  Fun wfun 6535  ''''cafv2 47178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fn 6544  df-dfat 47089  df-afv2 47179
This theorem is referenced by:  fnbrafv2b  47218
  Copyright terms: Public domain W3C validator