Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbrafv2 | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6802. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
funbrafv2 | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6435 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | brrelex2 5632 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
4 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
5 | 4 | anbi2d 628 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑥) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | eqeq2 2750 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
8 | funeu 6443 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
9 | tz6.12-1-afv2 44620 | . . . . . 6 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
10 | 8, 9 | sylan2 592 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑥)) → (𝐹''''𝐴) = 𝑥) |
11 | 10 | anabss7 669 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
12 | 7, 11 | vtoclg 3495 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
13 | 3, 12 | mpcom 38 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
14 | 13 | ex 412 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 Vcvv 3422 class class class wbr 5070 Rel wrel 5585 Fun wfun 6412 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-dfat 44498 df-afv2 44588 |
This theorem is referenced by: fnbrafv2b 44627 |
Copyright terms: Public domain | W3C validator |