Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funbrafv2 | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6820. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
funbrafv2 | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6451 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | brrelex2 5641 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
4 | breq2 5078 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
5 | 4 | anbi2d 629 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑥) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | eqeq2 2750 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
7 | 5, 6 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
8 | funeu 6459 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
9 | tz6.12-1-afv2 44733 | . . . . . 6 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑥)) → (𝐹''''𝐴) = 𝑥) |
11 | 10 | anabss7 670 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
12 | 7, 11 | vtoclg 3505 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
13 | 3, 12 | mpcom 38 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
14 | 13 | ex 413 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 class class class wbr 5074 Rel wrel 5594 Fun wfun 6427 ''''cafv2 44700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-dfat 44611 df-afv2 44701 |
This theorem is referenced by: fnbrafv2b 44740 |
Copyright terms: Public domain | W3C validator |