| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funbrafv2 | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6870. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| funbrafv2 | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6498 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | brrelex2 5670 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
| 4 | breq2 5095 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
| 5 | 4 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑥) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
| 6 | eqeq2 2743 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
| 7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
| 8 | funeu 6506 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
| 9 | tz6.12-1-afv2 47271 | . . . . . 6 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑥)) → (𝐹''''𝐴) = 𝑥) |
| 11 | 10 | anabss7 673 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
| 12 | 7, 11 | vtoclg 3509 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
| 13 | 3, 12 | mpcom 38 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
| 14 | 13 | ex 412 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 class class class wbr 5091 Rel wrel 5621 Fun wfun 6475 ''''cafv2 47238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-dfat 47149 df-afv2 47239 |
| This theorem is referenced by: fnbrafv2b 47278 |
| Copyright terms: Public domain | W3C validator |