Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv2 Structured version   Visualization version   GIF version

Theorem funbrafv2 44626
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6802. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
funbrafv2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))

Proof of Theorem funbrafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funrel 6435 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 brrelex2 5632 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
31, 2sylan 579 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
4 breq2 5074 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝐹𝑥𝐴𝐹𝐵))
54anbi2d 628 . . . . 5 (𝑥 = 𝐵 → ((Fun 𝐹𝐴𝐹𝑥) ↔ (Fun 𝐹𝐴𝐹𝐵)))
6 eqeq2 2750 . . . . 5 (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵))
75, 6imbi12d 344 . . . 4 (𝑥 = 𝐵 → (((Fun 𝐹𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)))
8 funeu 6443 . . . . . 6 ((Fun 𝐹𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
9 tz6.12-1-afv2 44620 . . . . . 6 ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
108, 9sylan2 592 . . . . 5 ((𝐴𝐹𝑥 ∧ (Fun 𝐹𝐴𝐹𝑥)) → (𝐹''''𝐴) = 𝑥)
1110anabss7 669 . . . 4 ((Fun 𝐹𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
127, 11vtoclg 3495 . . 3 (𝐵 ∈ V → ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))
133, 12mpcom 38 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)
1413ex 412 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ∃!weu 2568  Vcvv 3422   class class class wbr 5070  Rel wrel 5585  Fun wfun 6412  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-dfat 44498  df-afv2 44588
This theorem is referenced by:  fnbrafv2b  44627
  Copyright terms: Public domain W3C validator