| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| dfeqvrel2 | ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel 38603 | . 2 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 2 | refsymrel2 38585 | . . . 4 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | |
| 3 | dftrrel2 38595 | . . . 4 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 4 | 2, 3 | anbi12i 628 | . . 3 ⊢ ((( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) |
| 5 | df-3an 1088 | . . 3 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ (( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅)) | |
| 6 | df-3an 1088 | . . . . 5 ⊢ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) | |
| 7 | 6 | anbi1i 624 | . . . 4 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
| 8 | 3anan32 1096 | . . . 4 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
| 9 | anandi3r 1102 | . . . 4 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) | |
| 10 | 7, 8, 9 | 3bitr2i 299 | . . 3 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) |
| 11 | 4, 5, 10 | 3bitr4i 303 | . 2 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ⊆ wss 3926 I cid 5547 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 Rel wrel 5659 RefRel wrefrel 38205 SymRel wsymrel 38211 TrRel wtrrel 38214 EqvRel weqvrel 38216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-refrel 38530 df-symrel 38562 df-trrel 38592 df-eqvrel 38603 |
| This theorem is referenced by: eleqvrelsrel 38612 eqvrelrel 38615 eqvreltr 38625 |
| Copyright terms: Public domain | W3C validator |