Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeqvrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
Ref | Expression |
---|---|
dfeqvrel2 | ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eqvrel 36435 | . 2 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
2 | refsymrel2 36418 | . . . 4 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | |
3 | dftrrel2 36428 | . . . 4 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
4 | 2, 3 | anbi12i 630 | . . 3 ⊢ ((( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) |
5 | df-3an 1091 | . . 3 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ (( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅)) | |
6 | df-3an 1091 | . . . . 5 ⊢ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) | |
7 | 6 | anbi1i 627 | . . . 4 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
8 | 3anan32 1099 | . . . 4 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
9 | anandi3r 1105 | . . . 4 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) | |
10 | 7, 8, 9 | 3bitr2i 302 | . . 3 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) |
11 | 4, 5, 10 | 3bitr4i 306 | . 2 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
12 | 1, 11 | bitri 278 | 1 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ⊆ wss 3866 I cid 5454 ◡ccnv 5550 dom cdm 5551 ↾ cres 5553 ∘ ccom 5555 Rel wrel 5556 RefRel wrefrel 36076 SymRel wsymrel 36082 TrRel wtrrel 36085 EqvRel weqvrel 36087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-refrel 36367 df-symrel 36395 df-trrel 36425 df-eqvrel 36435 |
This theorem is referenced by: eleqvrelsrel 36444 eqvrelrel 36447 eqvreltr 36457 |
Copyright terms: Public domain | W3C validator |