Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrel2 Structured version   Visualization version   GIF version

Theorem dfeqvrel2 36703
Description: Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.)
Assertion
Ref Expression
dfeqvrel2 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))

Proof of Theorem dfeqvrel2
StepHypRef Expression
1 df-eqvrel 36698 . 2 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
2 refsymrel2 36681 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
3 dftrrel2 36691 . . . 4 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
42, 3anbi12i 627 . . 3 ((( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
5 df-3an 1088 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ (( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅))
6 df-3an 1088 . . . . 5 ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ (𝑅𝑅) ⊆ 𝑅))
76anbi1i 624 . . . 4 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
8 3anan32 1096 . . . 4 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
9 anandi3r 1102 . . . 4 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
107, 8, 93bitr2i 299 . . 3 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
114, 5, 103bitr4i 303 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
121, 11bitri 274 1 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086  wss 3887   I cid 5488  ccnv 5588  dom cdm 5589  cres 5591  ccom 5593  Rel wrel 5594   RefRel wrefrel 36339   SymRel wsymrel 36345   TrRel wtrrel 36348   EqvRel weqvrel 36350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-refrel 36630  df-symrel 36658  df-trrel 36688  df-eqvrel 36698
This theorem is referenced by:  eleqvrelsrel  36707  eqvrelrel  36710  eqvreltr  36720
  Copyright terms: Public domain W3C validator