Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeqvrel2 Structured version   Visualization version   GIF version

Theorem dfeqvrel2 38572
Description: Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.)
Assertion
Ref Expression
dfeqvrel2 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))

Proof of Theorem dfeqvrel2
StepHypRef Expression
1 df-eqvrel 38567 . 2 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
2 refsymrel2 38549 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
3 dftrrel2 38559 . . . 4 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
42, 3anbi12i 628 . . 3 ((( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
5 df-3an 1088 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ (( RefRel 𝑅 ∧ SymRel 𝑅) ∧ TrRel 𝑅))
6 df-3an 1088 . . . . 5 ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ (𝑅𝑅) ⊆ 𝑅))
76anbi1i 624 . . . 4 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
8 3anan32 1096 . . . 4 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
9 anandi3r 1102 . . . 4 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
107, 8, 93bitr2i 299 . . 3 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
114, 5, 103bitr4i 303 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
121, 11bitri 275 1 ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wss 3963   I cid 5582  ccnv 5688  dom cdm 5689  cres 5691  ccom 5693  Rel wrel 5694   RefRel wrefrel 38168   SymRel wsymrel 38174   TrRel wtrrel 38177   EqvRel weqvrel 38179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-refrel 38494  df-symrel 38526  df-trrel 38556  df-eqvrel 38567
This theorem is referenced by:  eleqvrelsrel  38576  eqvrelrel  38579  eqvreltr  38589
  Copyright terms: Public domain W3C validator