Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrel3 Structured version   Visualization version   GIF version

Theorem refsymrel3 38524
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the 𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) version of dfrefrel3 38472, cf. the comment of dfrefrel3 38472. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
refsymrel3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem refsymrel3
StepHypRef Expression
1 dfrefrel3 38472 . . . 4 ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅))
2 dfsymrel3 38506 . . . 4 ( SymRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅))
31, 2anbi12i 627 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅) ∧ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅)))
4 anandi3r 1103 . . 3 ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅) ∧ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅)))
5 3anan32 1097 . . 3 ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
63, 4, 53bitr2i 299 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
7 symrefref3 38520 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥))
87pm5.32ri 575 . . 3 ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
98anbi1i 623 . 2 (((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
106, 9bitri 275 1 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535  wral 3067   class class class wbr 5166  dom cdm 5700  ran crn 5701  Rel wrel 5705   RefRel wrefrel 38141   SymRel wsymrel 38147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-refrel 38468  df-symrel 38500
This theorem is referenced by:  dfeqvrel3  38547
  Copyright terms: Public domain W3C validator