Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrel3 Structured version   Visualization version   GIF version

Theorem refsymrel3 38559
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the 𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) version of dfrefrel3 38507, cf. the comment of dfrefrel3 38507. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
refsymrel3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem refsymrel3
StepHypRef Expression
1 dfrefrel3 38507 . . . 4 ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅))
2 dfsymrel3 38541 . . . 4 ( SymRel 𝑅 ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅))
31, 2anbi12i 628 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅) ∧ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅)))
4 anandi3r 1102 . . 3 ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅) ∧ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel 𝑅)))
5 3anan32 1096 . . 3 ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel 𝑅 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
63, 4, 53bitr2i 299 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
7 symrefref3 38555 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥))
87pm5.32ri 575 . . 3 ((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
98anbi1i 624 . 2 (((∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
106, 9bitri 275 1 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538  wral 3044   class class class wbr 5107  dom cdm 5638  ran crn 5639  Rel wrel 5643   RefRel wrefrel 38175   SymRel wsymrel 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-refrel 38503  df-symrel 38535
This theorem is referenced by:  dfeqvrel3  38582
  Copyright terms: Public domain W3C validator