Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrel2 Structured version   Visualization version   GIF version

Theorem refsymrel2 38558
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38506, cf. the comment of dfrefrels2 38504. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
refsymrel2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))

Proof of Theorem refsymrel2
StepHypRef Expression
1 dfrefrel2 38506 . . . 4 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
2 dfsymrel2 38540 . . . 4 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
31, 2anbi12i 628 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
4 anandi3r 1102 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅𝑅𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
5 3anan32 1096 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅𝑅𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
63, 4, 53bitr2i 299 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
7 symrefref2 38554 . . . 4 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
87pm5.32ri 575 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅))
98anbi1i 624 . 2 (((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
106, 9bitri 275 1 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  cin 3913  wss 3914   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  Rel wrel 5643   RefRel wrefrel 38175   SymRel wsymrel 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-refrel 38503  df-symrel 38535
This theorem is referenced by:  dfeqvrel2  38581  refrelredund4  38626
  Copyright terms: Public domain W3C validator