| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrel2 | Structured version Visualization version GIF version | ||
| Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 38627, cf. the comment of dfrefrels2 38625. (Contributed by Peter Mazsa, 23-Aug-2021.) |
| Ref | Expression |
|---|---|
| refsymrel2 | ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrel2 38627 | . . . 4 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 2 | dfsymrel2 38665 | . . . 4 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 3 | 1, 2 | anbi12i 628 | . . 3 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
| 4 | anandi3r 1102 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) | |
| 5 | 3anan32 1096 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | |
| 6 | 3, 4, 5 | 3bitr2i 299 | . 2 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
| 7 | symrefref2 38679 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | |
| 8 | 7 | pm5.32ri 575 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅)) |
| 9 | 8 | anbi1i 624 | . 2 ⊢ (((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
| 10 | 6, 9 | bitri 275 | 1 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∩ cin 3897 ⊆ wss 3898 I cid 5513 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 Rel wrel 5624 RefRel wrefrel 38248 SymRel wsymrel 38254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-refrel 38624 df-symrel 38656 |
| This theorem is referenced by: dfeqvrel2 38706 refrelredund4 38751 |
| Copyright terms: Public domain | W3C validator |