Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrel2 Structured version   Visualization version   GIF version

Theorem refsymrel2 37740
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 37688, cf. the comment of dfrefrels2 37686. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
refsymrel2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))

Proof of Theorem refsymrel2
StepHypRef Expression
1 dfrefrel2 37688 . . . 4 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
2 dfsymrel2 37722 . . . 4 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
31, 2anbi12i 625 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
4 anandi3r 1101 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅𝑅𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
5 3anan32 1095 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅𝑅𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
63, 4, 53bitr2i 298 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
7 symrefref2 37736 . . . 4 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
87pm5.32ri 574 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅))
98anbi1i 622 . 2 (((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
106, 9bitri 274 1 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1085  cin 3946  wss 3947   I cid 5572   × cxp 5673  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  Rel wrel 5680   RefRel wrefrel 37352   SymRel wsymrel 37358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-refrel 37685  df-symrel 37717
This theorem is referenced by:  dfeqvrel2  37763  refrelredund4  37808
  Copyright terms: Public domain W3C validator