Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrel2 | Structured version Visualization version GIF version |
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 36560, cf. the comment of dfrefrels2 36558. (Contributed by Peter Mazsa, 23-Aug-2021.) |
Ref | Expression |
---|---|
refsymrel2 | ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrel2 36560 | . . . 4 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
2 | dfsymrel2 36590 | . . . 4 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
3 | 1, 2 | anbi12i 626 | . . 3 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
4 | anandi3r 1101 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) | |
5 | 3anan32 1095 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | |
6 | 3, 4, 5 | 3bitr2i 298 | . 2 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
7 | symrefref2 36604 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | |
8 | 7 | pm5.32ri 575 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅)) |
9 | 8 | anbi1i 623 | . 2 ⊢ (((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
10 | 6, 9 | bitri 274 | 1 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∩ cin 3882 ⊆ wss 3883 I cid 5479 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 Rel wrel 5585 RefRel wrefrel 36266 SymRel wsymrel 36272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-refrel 36557 df-symrel 36585 |
This theorem is referenced by: dfeqvrel2 36630 refrelredund4 36675 |
Copyright terms: Public domain | W3C validator |