Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrel2 | Structured version Visualization version GIF version |
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 36642, cf. the comment of dfrefrels2 36640. (Contributed by Peter Mazsa, 23-Aug-2021.) |
Ref | Expression |
---|---|
refsymrel2 | ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrel2 36642 | . . . 4 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
2 | dfsymrel2 36672 | . . . 4 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
3 | 1, 2 | anbi12i 627 | . . 3 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
4 | anandi3r 1102 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) | |
5 | 3anan32 1096 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | |
6 | 3, 4, 5 | 3bitr2i 299 | . 2 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
7 | symrefref2 36686 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | |
8 | 7 | pm5.32ri 576 | . . 3 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅)) |
9 | 8 | anbi1i 624 | . 2 ⊢ (((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
10 | 6, 9 | bitri 274 | 1 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∩ cin 3891 ⊆ wss 3892 I cid 5489 × cxp 5588 ◡ccnv 5589 dom cdm 5590 ran crn 5591 ↾ cres 5592 Rel wrel 5595 RefRel wrefrel 36348 SymRel wsymrel 36354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-refrel 36639 df-symrel 36667 |
This theorem is referenced by: dfeqvrel2 36712 refrelredund4 36757 |
Copyright terms: Public domain | W3C validator |