Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrel2 Structured version   Visualization version   GIF version

Theorem refsymrel2 36375
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 36327, cf. the comment of dfrefrels2 36325. (Contributed by Peter Mazsa, 23-Aug-2021.)
Assertion
Ref Expression
refsymrel2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))

Proof of Theorem refsymrel2
StepHypRef Expression
1 dfrefrel2 36327 . . . 4 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
2 dfsymrel2 36357 . . . 4 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
31, 2anbi12i 630 . . 3 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
4 anandi3r 1105 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅𝑅𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
5 3anan32 1099 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅𝑅𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
63, 4, 53bitr2i 302 . 2 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
7 symrefref2 36371 . . . 4 (𝑅𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅))
87pm5.32ri 579 . . 3 ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ↔ (( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅))
98anbi1i 627 . 2 (((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
106, 9bitri 278 1 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089  cin 3856  wss 3857   I cid 5443   × cxp 5538  ccnv 5539  dom cdm 5540  ran crn 5541  cres 5542  Rel wrel 5545   RefRel wrefrel 36033   SymRel wsymrel 36039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-br 5044  df-opab 5106  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-dm 5550  df-rn 5551  df-res 5552  df-refrel 36324  df-symrel 36352
This theorem is referenced by:  dfeqvrel2  36397  refrelredund4  36442
  Copyright terms: Public domain W3C validator