MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan32 Structured version   Visualization version   GIF version

Theorem 3anan32 1096
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32 646 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3ancomb  1098  anandi3r  1102  rabssrabd  4063  dff1o3  6829  bropfvvvvlem  8095  tz7.49c  8465  ispos2  18332  lbsacsbs  21122  obslbs  21695  islbs4  21797  leordtvallem1  23153  trfbas2  23786  isclmp  25053  lssbn  25309  sineq0  26490  dchrelbas3  27206  elno3  27624  nb3grpr2  29367  uspgr2wlkeq  29631  2spthd  29928  clwwlknonwwlknonb  30092  frgr2wwlkeu  30313  elicoelioo  32760  cndprobprob  34475  bnj543  34929  cusgr3cyclex  35163  ellimits  35933  refsymrel2  38590  refsymrel3  38591  dfeqvrel2  38613  dfeqvrel3  38614  i0oii  48861
  Copyright terms: Public domain W3C validator