| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4049 dff1o3 6809 bropfvvvvlem 8073 tz7.49c 8417 ispos2 18283 lbsacsbs 21073 obslbs 21646 islbs4 21748 leordtvallem1 23104 trfbas2 23737 isclmp 25004 lssbn 25259 sineq0 26440 dchrelbas3 27156 elno3 27574 nb3grpr2 29317 uspgr2wlkeq 29581 2spthd 29878 clwwlknonwwlknonb 30042 frgr2wwlkeu 30263 elicoelioo 32708 cndprobprob 34436 bnj543 34890 cusgr3cyclex 35130 ellimits 35905 eldmxrncnvepres 38403 eldmxrncnvepres2 38404 refsymrel2 38565 refsymrel3 38566 dfeqvrel2 38588 dfeqvrel3 38589 i0oii 48912 |
| Copyright terms: Public domain | W3C validator |