| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4030 dff1o3 6769 bropfvvvvlem 8021 tz7.49c 8365 ispos2 18221 lbsacsbs 21093 obslbs 21667 islbs4 21769 leordtvallem1 23125 trfbas2 23758 isclmp 25024 lssbn 25279 sineq0 26460 dchrelbas3 27176 elno3 27594 nb3grpr2 29361 uspgr2wlkeq 29624 2spthd 29919 clwwlknonwwlknonb 30086 frgr2wwlkeu 30307 elicoelioo 32761 cndprobprob 34451 bnj543 34905 cusgr3cyclex 35180 ellimits 35952 eldmxrncnvepres 38468 eldmxrncnvepres2 38469 refsymrel2 38673 refsymrel3 38674 dfeqvrel2 38696 dfeqvrel3 38697 i0oii 49030 |
| Copyright terms: Public domain | W3C validator |