Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 643 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4016 dff1o3 6722 bropfvvvvlem 7931 tz7.49c 8277 ispos2 18033 lbsacsbs 20418 obslbs 20937 islbs4 21039 leordtvallem1 22361 trfbas2 22994 isclmp 24260 lssbn 24516 sineq0 25680 dchrelbas3 26386 nb3grpr2 27750 uspgr2wlkeq 28013 2spthd 28306 clwwlknonwwlknonb 28470 frgr2wwlkeu 28691 elicoelioo 31099 cndprobprob 32405 bnj543 32873 cusgr3cyclex 33098 elno3 33858 ellimits 34212 refsymrel2 36681 refsymrel3 36682 dfeqvrel2 36703 dfeqvrel3 36704 i0oii 46213 |
Copyright terms: Public domain | W3C validator |