![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4093 dff1o3 6855 bropfvvvvlem 8115 tz7.49c 8485 ispos2 18373 lbsacsbs 21176 obslbs 21768 islbs4 21870 leordtvallem1 23234 trfbas2 23867 isclmp 25144 lssbn 25400 sineq0 26581 dchrelbas3 27297 elno3 27715 nb3grpr2 29415 uspgr2wlkeq 29679 2spthd 29971 clwwlknonwwlknonb 30135 frgr2wwlkeu 30356 elicoelioo 32787 cndprobprob 34420 bnj543 34886 cusgr3cyclex 35121 ellimits 35892 refsymrel2 38549 refsymrel3 38550 dfeqvrel2 38572 dfeqvrel3 38573 i0oii 48716 |
Copyright terms: Public domain | W3C validator |