MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan32 Structured version   Visualization version   GIF version

Theorem 3anan32 1096
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32 646 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3ancomb  1098  anandi3r  1102  rabssrabd  4049  dff1o3  6809  bropfvvvvlem  8073  tz7.49c  8417  ispos2  18283  lbsacsbs  21073  obslbs  21646  islbs4  21748  leordtvallem1  23104  trfbas2  23737  isclmp  25004  lssbn  25259  sineq0  26440  dchrelbas3  27156  elno3  27574  nb3grpr2  29317  uspgr2wlkeq  29581  2spthd  29878  clwwlknonwwlknonb  30042  frgr2wwlkeu  30263  elicoelioo  32708  cndprobprob  34436  bnj543  34890  cusgr3cyclex  35130  ellimits  35905  eldmxrncnvepres  38403  eldmxrncnvepres2  38404  refsymrel2  38565  refsymrel3  38566  dfeqvrel2  38588  dfeqvrel3  38589  i0oii  48912
  Copyright terms: Public domain W3C validator