MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan32 Structured version   Visualization version   GIF version

Theorem 3anan32 1096
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32 643 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
31, 2bitri 274 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  3ancomb  1098  anandi3r  1102  rabssrabd  4016  dff1o3  6722  bropfvvvvlem  7931  tz7.49c  8277  ispos2  18033  lbsacsbs  20418  obslbs  20937  islbs4  21039  leordtvallem1  22361  trfbas2  22994  isclmp  24260  lssbn  24516  sineq0  25680  dchrelbas3  26386  nb3grpr2  27750  uspgr2wlkeq  28013  2spthd  28306  clwwlknonwwlknonb  28470  frgr2wwlkeu  28691  elicoelioo  31099  cndprobprob  32405  bnj543  32873  cusgr3cyclex  33098  elno3  33858  ellimits  34212  refsymrel2  36681  refsymrel3  36682  dfeqvrel2  36703  dfeqvrel3  36704  i0oii  46213
  Copyright terms: Public domain W3C validator