MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan32 Structured version   Visualization version   GIF version

Theorem 3anan32 1096
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32 646 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3ancomb  1098  anandi3r  1102  rabssrabd  4093  dff1o3  6855  bropfvvvvlem  8115  tz7.49c  8485  ispos2  18373  lbsacsbs  21176  obslbs  21768  islbs4  21870  leordtvallem1  23234  trfbas2  23867  isclmp  25144  lssbn  25400  sineq0  26581  dchrelbas3  27297  elno3  27715  nb3grpr2  29415  uspgr2wlkeq  29679  2spthd  29971  clwwlknonwwlknonb  30135  frgr2wwlkeu  30356  elicoelioo  32787  cndprobprob  34420  bnj543  34886  cusgr3cyclex  35121  ellimits  35892  refsymrel2  38549  refsymrel3  38550  dfeqvrel2  38572  dfeqvrel3  38573  i0oii  48716
  Copyright terms: Public domain W3C validator