![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1073 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 636 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 267 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1073 |
This theorem is referenced by: 3ancomb 1084 anandi3r 1091 rabssrabd 3910 dff1o3 6399 bropfvvvvlem 7539 tz7.49c 7826 ispos2 17338 lbsacsbs 19557 obslbs 20477 islbs4 20579 leordtvallem1 21426 trfbas2 22059 isclmp 23308 lssbn 23562 sineq0 24715 dchrelbas3 25419 nb3grpr2 26735 uspgr2wlkeq 26997 2spthd 27325 clwwlknonwwlknonb 27512 frgr2wwlkeu 27739 elicoelioo 30108 cndprobprob 31103 bnj543 31566 elno3 32401 ellimits 32610 refsymrel2 34946 refsymrel3 34947 dfeqvrel2 34967 dfeqvrel3 34968 |
Copyright terms: Public domain | W3C validator |