| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4063 dff1o3 6829 bropfvvvvlem 8095 tz7.49c 8465 ispos2 18332 lbsacsbs 21122 obslbs 21695 islbs4 21797 leordtvallem1 23153 trfbas2 23786 isclmp 25053 lssbn 25309 sineq0 26490 dchrelbas3 27206 elno3 27624 nb3grpr2 29367 uspgr2wlkeq 29631 2spthd 29928 clwwlknonwwlknonb 30092 frgr2wwlkeu 30313 elicoelioo 32760 cndprobprob 34475 bnj543 34929 cusgr3cyclex 35163 ellimits 35933 refsymrel2 38590 refsymrel3 38591 dfeqvrel2 38613 dfeqvrel3 38614 i0oii 48861 |
| Copyright terms: Public domain | W3C validator |