MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan32 Structured version   Visualization version   GIF version

Theorem 3anan32 1097
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 1089 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32 645 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  3ancomb  1099  anandi3r  1103  rabssrabd  4106  dff1o3  6868  bropfvvvvlem  8132  tz7.49c  8502  ispos2  18385  lbsacsbs  21181  obslbs  21773  islbs4  21875  leordtvallem1  23239  trfbas2  23872  isclmp  25149  lssbn  25405  sineq0  26584  dchrelbas3  27300  elno3  27718  nb3grpr2  29418  uspgr2wlkeq  29682  2spthd  29974  clwwlknonwwlknonb  30138  frgr2wwlkeu  30359  elicoelioo  32783  cndprobprob  34403  bnj543  34869  cusgr3cyclex  35104  ellimits  35874  refsymrel2  38523  refsymrel3  38524  dfeqvrel2  38546  dfeqvrel3  38547  i0oii  48599
  Copyright terms: Public domain W3C validator