MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan32 Structured version   Visualization version   GIF version

Theorem 3anan32 1096
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 an32 646 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3ancomb  1098  anandi3r  1102  rabssrabd  4030  dff1o3  6769  bropfvvvvlem  8021  tz7.49c  8365  ispos2  18221  lbsacsbs  21093  obslbs  21667  islbs4  21769  leordtvallem1  23125  trfbas2  23758  isclmp  25024  lssbn  25279  sineq0  26460  dchrelbas3  27176  elno3  27594  nb3grpr2  29361  uspgr2wlkeq  29624  2spthd  29919  clwwlknonwwlknonb  30086  frgr2wwlkeu  30307  elicoelioo  32761  cndprobprob  34451  bnj543  34905  cusgr3cyclex  35180  ellimits  35952  eldmxrncnvepres  38468  eldmxrncnvepres2  38469  refsymrel2  38673  refsymrel3  38674  dfeqvrel2  38696  dfeqvrel3  38697  i0oii  49030
  Copyright terms: Public domain W3C validator