Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 642 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3ancomb 1097 anandi3r 1101 rabssrabd 4012 dff1o3 6706 bropfvvvvlem 7902 tz7.49c 8247 ispos2 17948 lbsacsbs 20333 obslbs 20847 islbs4 20949 leordtvallem1 22269 trfbas2 22902 isclmp 24166 lssbn 24421 sineq0 25585 dchrelbas3 26291 nb3grpr2 27653 uspgr2wlkeq 27915 2spthd 28207 clwwlknonwwlknonb 28371 frgr2wwlkeu 28592 elicoelioo 31001 cndprobprob 32305 bnj543 32773 cusgr3cyclex 32998 elno3 33785 ellimits 34139 refsymrel2 36608 refsymrel3 36609 dfeqvrel2 36630 dfeqvrel3 36631 i0oii 46101 |
Copyright terms: Public domain | W3C validator |