![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 645 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3ancomb 1099 anandi3r 1103 rabssrabd 4106 dff1o3 6868 bropfvvvvlem 8132 tz7.49c 8502 ispos2 18385 lbsacsbs 21181 obslbs 21773 islbs4 21875 leordtvallem1 23239 trfbas2 23872 isclmp 25149 lssbn 25405 sineq0 26584 dchrelbas3 27300 elno3 27718 nb3grpr2 29418 uspgr2wlkeq 29682 2spthd 29974 clwwlknonwwlknonb 30138 frgr2wwlkeu 30359 elicoelioo 32783 cndprobprob 34403 bnj543 34869 cusgr3cyclex 35104 ellimits 35874 refsymrel2 38523 refsymrel3 38524 dfeqvrel2 38546 dfeqvrel3 38547 i0oii 48599 |
Copyright terms: Public domain | W3C validator |