| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4046 dff1o3 6806 bropfvvvvlem 8070 tz7.49c 8414 ispos2 18276 lbsacsbs 21066 obslbs 21639 islbs4 21741 leordtvallem1 23097 trfbas2 23730 isclmp 24997 lssbn 25252 sineq0 26433 dchrelbas3 27149 elno3 27567 nb3grpr2 29310 uspgr2wlkeq 29574 2spthd 29871 clwwlknonwwlknonb 30035 frgr2wwlkeu 30256 elicoelioo 32701 cndprobprob 34429 bnj543 34883 cusgr3cyclex 35123 ellimits 35898 eldmxrncnvepres 38396 eldmxrncnvepres2 38397 refsymrel2 38558 refsymrel3 38559 dfeqvrel2 38581 dfeqvrel3 38582 i0oii 48908 |
| Copyright terms: Public domain | W3C validator |