| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4034 dff1o3 6770 bropfvvvvlem 8024 tz7.49c 8368 ispos2 18221 lbsacsbs 21063 obslbs 21637 islbs4 21739 leordtvallem1 23095 trfbas2 23728 isclmp 24995 lssbn 25250 sineq0 26431 dchrelbas3 27147 elno3 27565 nb3grpr2 29328 uspgr2wlkeq 29591 2spthd 29886 clwwlknonwwlknonb 30050 frgr2wwlkeu 30271 elicoelioo 32721 cndprobprob 34406 bnj543 34860 cusgr3cyclex 35113 ellimits 35888 eldmxrncnvepres 38386 eldmxrncnvepres2 38387 refsymrel2 38548 refsymrel3 38549 dfeqvrel2 38571 dfeqvrel3 38572 i0oii 48908 |
| Copyright terms: Public domain | W3C validator |