![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 642 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: 3ancomb 1097 anandi3r 1101 rabssrabd 4080 dff1o3 6838 bropfvvvvlem 8079 tz7.49c 8448 ispos2 18272 lbsacsbs 20914 obslbs 21504 islbs4 21606 leordtvallem1 22934 trfbas2 23567 isclmp 24844 lssbn 25100 sineq0 26269 dchrelbas3 26977 elno3 27394 nb3grpr2 28907 uspgr2wlkeq 29170 2spthd 29462 clwwlknonwwlknonb 29626 frgr2wwlkeu 29847 elicoelioo 32256 cndprobprob 33735 bnj543 34202 cusgr3cyclex 34425 ellimits 35186 refsymrel2 37740 refsymrel3 37741 dfeqvrel2 37763 dfeqvrel3 37764 i0oii 47639 |
Copyright terms: Public domain | W3C validator |