| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | an32 646 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancomb 1098 anandi3r 1102 rabssrabd 4042 dff1o3 6788 bropfvvvvlem 8047 tz7.49c 8391 ispos2 18256 lbsacsbs 21098 obslbs 21672 islbs4 21774 leordtvallem1 23130 trfbas2 23763 isclmp 25030 lssbn 25285 sineq0 26466 dchrelbas3 27182 elno3 27600 nb3grpr2 29363 uspgr2wlkeq 29626 2spthd 29921 clwwlknonwwlknonb 30085 frgr2wwlkeu 30306 elicoelioo 32751 cndprobprob 34422 bnj543 34876 cusgr3cyclex 35116 ellimits 35891 eldmxrncnvepres 38389 eldmxrncnvepres2 38390 refsymrel2 38551 refsymrel3 38552 dfeqvrel2 38574 dfeqvrel3 38575 i0oii 48901 |
| Copyright terms: Public domain | W3C validator |