Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  i0oii Structured version   Visualization version   GIF version

Theorem i0oii 48901
Description: (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
i0oii (𝐴 ≤ 1 → (0[,)𝐴) ∈ II)

Proof of Theorem i0oii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anandi3r 1102 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) ∧ (𝑥 < 𝐴𝐴 ≤ 1)))
2 rexr 11196 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3 lerelxr 11213 . . . . . . . . . . . . . 14 ≤ ⊆ (ℝ* × ℝ*)
43brel 5696 . . . . . . . . . . . . 13 (𝐴 ≤ 1 → (𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*))
54simpld 494 . . . . . . . . . . . 12 (𝐴 ≤ 1 → 𝐴 ∈ ℝ*)
6 1xr 11209 . . . . . . . . . . . . 13 1 ∈ ℝ*
7 xrltletr 13093 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 < 1))
8 xrltle 13085 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 < 1 → 𝑥 ≤ 1))
983adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 < 1 → 𝑥 ≤ 1))
107, 9syld 47 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
116, 10mp3an3 1452 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
122, 5, 11syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
1312imp 406 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) ∧ (𝑥 < 𝐴𝐴 ≤ 1)) → 𝑥 ≤ 1)
141, 13sylbi 217 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1)
15143com12 1123 . . . . . . . 8 ((𝐴 ≤ 1 ∧ 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1)
16153expib 1122 . . . . . . 7 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1))
1716pm4.71d 561 . . . . . 6 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1)))
1817anbi1d 631 . . . . 5 (𝐴 ≤ 1 → (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥)))
19 3anan32 1096 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥))
20 3anass 1094 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
2120anbi2i 623 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
22 anandi 676 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
23 3anass 1094 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
24 3anan32 1096 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
25 anass 468 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (0 ≤ 𝑥𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
2623, 24, 253bitr3ri 302 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
2721, 22, 263bitr2i 299 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
2818, 19, 273bitr4g 314 . . . 4 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
29 0re 11152 . . . . 5 0 ∈ ℝ
30 elico2 13347 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (0[,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴)))
3129, 5, 30sylancr 587 . . . 4 (𝐴 ≤ 1 → (𝑥 ∈ (0[,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴)))
32 elin 3927 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ 𝑥 ∈ (0[,]1)))
33 elicc01 13403 . . . . . . 7 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
3433anbi2i 623 . . . . . 6 ((𝑥 ∈ (-∞(,)𝐴) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
3532, 34bitri 275 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
36 elioomnf 13381 . . . . . . 7 (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
375, 36syl 17 . . . . . 6 (𝐴 ≤ 1 → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
3837anbi1d 631 . . . . 5 (𝐴 ≤ 1 → ((𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3935, 38bitrid 283 . . . 4 (𝐴 ≤ 1 → (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
4028, 31, 393bitr4rd 312 . . 3 (𝐴 ≤ 1 → (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ 𝑥 ∈ (0[,)𝐴)))
4140eqrdv 2727 . 2 (𝐴 ≤ 1 → ((-∞(,)𝐴) ∩ (0[,]1)) = (0[,)𝐴))
42 fvex 6853 . . . 4 (topGen‘ran (,)) ∈ V
43 ovex 7402 . . . 4 (0[,]1) ∈ V
44 iooretop 24686 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
45 elrestr 17367 . . . 4 (((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
4642, 43, 44, 45mp3an 1463 . . 3 ((-∞(,)𝐴) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1))
47 dfii2 24808 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4846, 47eleqtrri 2827 . 2 ((-∞(,)𝐴) ∩ (0[,]1)) ∈ II
4941, 48eqeltrrdi 2837 1 (𝐴 ≤ 1 → (0[,)𝐴) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  Vcvv 3444  cin 3910   class class class wbr 5102  ran crn 5632  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  (,)cioo 13282  [,)cico 13284  [,]cicc 13285  t crest 17359  topGenctg 17376  IIcii 24801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-ii 24803
This theorem is referenced by:  sepfsepc  48909
  Copyright terms: Public domain W3C validator