Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  i0oii Structured version   Visualization version   GIF version

Theorem i0oii 48914
Description: (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
i0oii (𝐴 ≤ 1 → (0[,)𝐴) ∈ II)

Proof of Theorem i0oii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anandi3r 1102 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) ∧ (𝑥 < 𝐴𝐴 ≤ 1)))
2 rexr 11161 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3 lerelxr 11178 . . . . . . . . . . . . . 14 ≤ ⊆ (ℝ* × ℝ*)
43brel 5684 . . . . . . . . . . . . 13 (𝐴 ≤ 1 → (𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*))
54simpld 494 . . . . . . . . . . . 12 (𝐴 ≤ 1 → 𝐴 ∈ ℝ*)
6 1xr 11174 . . . . . . . . . . . . 13 1 ∈ ℝ*
7 xrltletr 13059 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 < 1))
8 xrltle 13051 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 < 1 → 𝑥 ≤ 1))
983adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 < 1 → 𝑥 ≤ 1))
107, 9syld 47 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
116, 10mp3an3 1452 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
122, 5, 11syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
1312imp 406 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) ∧ (𝑥 < 𝐴𝐴 ≤ 1)) → 𝑥 ≤ 1)
141, 13sylbi 217 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1)
15143com12 1123 . . . . . . . 8 ((𝐴 ≤ 1 ∧ 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1)
16153expib 1122 . . . . . . 7 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1))
1716pm4.71d 561 . . . . . 6 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1)))
1817anbi1d 631 . . . . 5 (𝐴 ≤ 1 → (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥)))
19 3anan32 1096 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥))
20 3anass 1094 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
2120anbi2i 623 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
22 anandi 676 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
23 3anass 1094 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
24 3anan32 1096 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
25 anass 468 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (0 ≤ 𝑥𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
2623, 24, 253bitr3ri 302 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
2721, 22, 263bitr2i 299 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
2818, 19, 273bitr4g 314 . . . 4 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
29 0re 11117 . . . . 5 0 ∈ ℝ
30 elico2 13313 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (0[,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴)))
3129, 5, 30sylancr 587 . . . 4 (𝐴 ≤ 1 → (𝑥 ∈ (0[,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴)))
32 elin 3919 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ 𝑥 ∈ (0[,]1)))
33 elicc01 13369 . . . . . . 7 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
3433anbi2i 623 . . . . . 6 ((𝑥 ∈ (-∞(,)𝐴) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
3532, 34bitri 275 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
36 elioomnf 13347 . . . . . . 7 (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
375, 36syl 17 . . . . . 6 (𝐴 ≤ 1 → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
3837anbi1d 631 . . . . 5 (𝐴 ≤ 1 → ((𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3935, 38bitrid 283 . . . 4 (𝐴 ≤ 1 → (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
4028, 31, 393bitr4rd 312 . . 3 (𝐴 ≤ 1 → (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ 𝑥 ∈ (0[,)𝐴)))
4140eqrdv 2727 . 2 (𝐴 ≤ 1 → ((-∞(,)𝐴) ∩ (0[,]1)) = (0[,)𝐴))
42 fvex 6835 . . . 4 (topGen‘ran (,)) ∈ V
43 ovex 7382 . . . 4 (0[,]1) ∈ V
44 iooretop 24651 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
45 elrestr 17332 . . . 4 (((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
4642, 43, 44, 45mp3an 1463 . . 3 ((-∞(,)𝐴) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1))
47 dfii2 24773 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4846, 47eleqtrri 2827 . 2 ((-∞(,)𝐴) ∩ (0[,]1)) ∈ II
4941, 48eqeltrrdi 2837 1 (𝐴 ≤ 1 → (0[,)𝐴) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  Vcvv 3436  cin 3902   class class class wbr 5092  ran crn 5620  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  [,)cico 13250  [,]cicc 13251  t crest 17324  topGenctg 17341  IIcii 24766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-ii 24768
This theorem is referenced by:  sepfsepc  48922
  Copyright terms: Public domain W3C validator