Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  i0oii Structured version   Visualization version   GIF version

Theorem i0oii 46942
Description: (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
i0oii (𝐴 ≤ 1 → (0[,)𝐴) ∈ II)

Proof of Theorem i0oii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anandi3r 1103 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) ∧ (𝑥 < 𝐴𝐴 ≤ 1)))
2 rexr 11201 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3 lerelxr 11218 . . . . . . . . . . . . . 14 ≤ ⊆ (ℝ* × ℝ*)
43brel 5697 . . . . . . . . . . . . 13 (𝐴 ≤ 1 → (𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*))
54simpld 495 . . . . . . . . . . . 12 (𝐴 ≤ 1 → 𝐴 ∈ ℝ*)
6 1xr 11214 . . . . . . . . . . . . 13 1 ∈ ℝ*
7 xrltletr 13076 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 < 1))
8 xrltle 13068 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 < 1 → 𝑥 ≤ 1))
983adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 < 1 → 𝑥 ≤ 1))
107, 9syld 47 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
116, 10mp3an3 1450 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
122, 5, 11syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) → ((𝑥 < 𝐴𝐴 ≤ 1) → 𝑥 ≤ 1))
1312imp 407 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1) ∧ (𝑥 < 𝐴𝐴 ≤ 1)) → 𝑥 ≤ 1)
141, 13sylbi 216 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐴 ≤ 1 ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1)
15143com12 1123 . . . . . . . 8 ((𝐴 ≤ 1 ∧ 𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1)
16153expib 1122 . . . . . . 7 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ≤ 1))
1716pm4.71d 562 . . . . . 6 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1)))
1817anbi1d 630 . . . . 5 (𝐴 ≤ 1 → (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥)))
19 3anan32 1097 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥))
20 3anass 1095 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
2120anbi2i 623 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
22 anandi 674 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
23 3anass 1095 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (0 ≤ 𝑥𝑥 ≤ 1)))
24 3anan32 1097 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 0 ≤ 𝑥𝑥 ≤ 1) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
25 anass 469 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (0 ≤ 𝑥𝑥 ≤ 1)) ↔ (𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))))
2623, 24, 253bitr3ri 301 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 < 𝐴 ∧ (0 ≤ 𝑥𝑥 ≤ 1))) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
2721, 22, 263bitr2i 298 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ (((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ 𝑥 ≤ 1) ∧ 0 ≤ 𝑥))
2818, 19, 273bitr4g 313 . . . 4 (𝐴 ≤ 1 → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
29 0re 11157 . . . . 5 0 ∈ ℝ
30 elico2 13328 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑥 ∈ (0[,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴)))
3129, 5, 30sylancr 587 . . . 4 (𝐴 ≤ 1 → (𝑥 ∈ (0[,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 𝐴)))
32 elin 3926 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ 𝑥 ∈ (0[,]1)))
33 elicc01 13383 . . . . . . 7 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
3433anbi2i 623 . . . . . 6 ((𝑥 ∈ (-∞(,)𝐴) ∧ 𝑥 ∈ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
3532, 34bitri 274 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)))
36 elioomnf 13361 . . . . . . 7 (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
375, 36syl 17 . . . . . 6 (𝐴 ≤ 1 → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
3837anbi1d 630 . . . . 5 (𝐴 ≤ 1 → ((𝑥 ∈ (-∞(,)𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
3935, 38bitrid 282 . . . 4 (𝐴 ≤ 1 → (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))))
4028, 31, 393bitr4rd 311 . . 3 (𝐴 ≤ 1 → (𝑥 ∈ ((-∞(,)𝐴) ∩ (0[,]1)) ↔ 𝑥 ∈ (0[,)𝐴)))
4140eqrdv 2734 . 2 (𝐴 ≤ 1 → ((-∞(,)𝐴) ∩ (0[,]1)) = (0[,)𝐴))
42 fvex 6855 . . . 4 (topGen‘ran (,)) ∈ V
43 ovex 7390 . . . 4 (0[,]1) ∈ V
44 iooretop 24129 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
45 elrestr 17310 . . . 4 (((topGen‘ran (,)) ∈ V ∧ (0[,]1) ∈ V ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1)))
4642, 43, 44, 45mp3an 1461 . . 3 ((-∞(,)𝐴) ∩ (0[,]1)) ∈ ((topGen‘ran (,)) ↾t (0[,]1))
47 dfii2 24245 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4846, 47eleqtrri 2837 . 2 ((-∞(,)𝐴) ∩ (0[,]1)) ∈ II
4941, 48eqeltrrdi 2847 1 (𝐴 ≤ 1 → (0[,)𝐴) ∈ II)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  Vcvv 3445  cin 3909   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  t crest 17302  topGenctg 17319  IIcii 24238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-ii 24240
This theorem is referenced by:  sepfsepc  46950
  Copyright terms: Public domain W3C validator