MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancl Structured version   Visualization version   GIF version

Theorem ancl 545
Description: Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancl ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))

Proof of Theorem ancl
StepHypRef Expression
1 pm3.2 470 . 2 (𝜑 → (𝜓 → (𝜑𝜓)))
21a2i 14 1 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  exintr  1895  bnj1118  32964  bnj1128  32970  bnj1145  32973  bnj1174  32983
  Copyright terms: Public domain W3C validator