MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anclb Structured version   Visualization version   GIF version

Theorem anclb 545
Description: Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
anclb ((𝜑𝜓) ↔ (𝜑 → (𝜑𝜓)))

Proof of Theorem anclb
StepHypRef Expression
1 ibar 528 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21pm5.74i 270 1 ((𝜑𝜓) ↔ (𝜑 → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  pm4.71  557  difin  4192  bnj1021  32846  dihglblem6  39281  mnuunid  41784
  Copyright terms: Public domain W3C validator